install_check.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import

import os
import logging
import numpy as np

import paddle

23 24
__all__ = []

25 26 27 28 29

def _simple_network():
    """
    Define a simple network composed by a single linear layer.
    """
30 31 32
    input = paddle.static.data(name="input",
                               shape=[None, 2, 2],
                               dtype="float32")
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    weight = paddle.create_parameter(
        shape=[2, 3],
        dtype="float32",
        attr=paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.1)))
    bias = paddle.create_parameter(shape=[3], dtype="float32")
    linear_out = paddle.nn.functional.linear(x=input, weight=weight, bias=bias)
    out = paddle.tensor.sum(linear_out)
    return input, out, weight


def _prepare_data(device_count):
    """
    Prepare feeding data for simple network. The shape is [device_count, 2, 2].

    Args:
        device_count (int): The number of devices.
    """
    # Prepare the feeding data.
    np_input_single = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
    if device_count == 1:
        return np_input_single.reshape(device_count, 2, 2)
    else:
        input_list = []
        for i in range(device_count):
            input_list.append(np_input_single)
        np_input_muti = np.array(input_list)
        np_input_muti = np_input_muti.reshape(device_count, 2, 2)
        return np_input_muti


def _is_cuda_available():
    """
    Check whether CUDA is avaiable.
    """
    try:
        assert len(paddle.static.cuda_places()) > 0
        return True
    except Exception as e:
        logging.warning(
            "You are using GPU version PaddlePaddle, but there is no GPU "
            "detected on your machine. Maybe CUDA devices is not set properly."
            "\n Original Error is {}".format(e))
        return False


78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def _is_npu_available():
    """
    Check whether NPU is avaiable.
    """
    try:
        assert len(paddle.static.npu_places()) > 0
        return True
    except Exception as e:
        logging.warning(
            "You are using NPU version PaddlePaddle, but there is no NPU "
            "detected on your machine. Maybe NPU devices is not set properly."
            "\n Original Error is {}".format(e))
        return False


93
def _is_xpu_available():
94
    """
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    Check whether XPU is avaiable.
    """
    try:
        assert len(paddle.static.xpu_places()) > 0
        return True
    except Exception as e:
        logging.warning(
            "You are using XPU version PaddlePaddle, but there is no XPU "
            "detected on your machine. Maybe XPU devices is not set properly."
            "\n Original Error is {}".format(e))
        return False


def _run_dygraph_single(use_cuda, use_xpu, use_npu):
    """
    Testing the simple network in dygraph mode using one CPU/GPU/XPU/NPU.
111 112 113

    Args:
        use_cuda (bool): Whether running with CUDA.
114 115
        use_xpu (bool): Whether running with XPU.
        use_npu (bool): Whether running with NPU.
116 117 118 119
    """
    paddle.disable_static()
    if use_cuda:
        paddle.set_device('gpu')
120 121
    elif use_xpu:
        paddle.set_device('xpu')
122 123
    elif use_npu:
        paddle.set_device('npu')
124 125 126 127 128 129
    else:
        paddle.set_device('cpu')
    weight_attr = paddle.ParamAttr(
        name="weight", initializer=paddle.nn.initializer.Constant(value=0.5))
    bias_attr = paddle.ParamAttr(
        name="bias", initializer=paddle.nn.initializer.Constant(value=1.0))
130 131 132 133
    linear = paddle.nn.Linear(2,
                              4,
                              weight_attr=weight_attr,
                              bias_attr=bias_attr)
134 135 136 137 138
    input_np = _prepare_data(1)
    input_tensor = paddle.to_tensor(input_np)
    linear_out = linear(input_tensor)
    out = paddle.tensor.sum(linear_out)
    out.backward()
139 140
    opt = paddle.optimizer.Adam(learning_rate=0.001,
                                parameters=linear.parameters())
141 142 143
    opt.step()


144
def _run_static_single(use_cuda, use_xpu, use_npu):
145
    """
146
    Testing the simple network with executor running directly, using one CPU/GPU/XPU/NPU.
147 148 149

    Args:
        use_cuda (bool): Whether running with CUDA.
150 151
        use_xpu (bool): Whether running with XPU.
        use_npu (bool): Whether running with NPU.
152 153 154 155 156 157 158 159 160 161 162
    """
    paddle.enable_static()
    with paddle.static.scope_guard(paddle.static.Scope()):
        train_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        startup_prog.random_seed = 1
        with paddle.static.program_guard(train_prog, startup_prog):
            input, out, weight = _simple_network()
            param_grads = paddle.static.append_backward(
                out, parameter_list=[weight.name])[0]

163 164
        if use_cuda:
            place = paddle.CUDAPlace(0)
165 166
        elif use_xpu:
            place = paddle.XPUPlace(0)
167 168 169 170 171 172
        elif use_npu:
            place = paddle.NPUPlace(0)
        else:
            place = paddle.CPUPlace()

        exe = paddle.static.Executor(place)
173 174 175 176 177 178 179
        exe.run(startup_prog)
        exe.run(train_prog,
                feed={input.name: _prepare_data(1)},
                fetch_list=[out.name, param_grads[1].name])
    paddle.disable_static()


180
def _run_static_parallel(use_cuda, use_xpu, use_npu, device_list):
181 182 183 184 185
    """
    Testing the simple network in data parallel mode, using multiple CPU/GPU.

    Args:
        use_cuda (bool): Whether running with CUDA.
186 187
        use_xpu (bool): Whether running with XPU.
        use_npu (bool): Whether running with NPU.
188 189 190 191 192 193 194 195 196 197 198 199 200
        device_list (int): The specified devices.
    """
    paddle.enable_static()
    with paddle.static.scope_guard(paddle.static.Scope()):
        train_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        with paddle.static.program_guard(train_prog, startup_prog):
            input, out, _ = _simple_network()
            loss = paddle.tensor.mean(out)
            loss.persistable = True
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)

        compiled_prog = paddle.static.CompiledProgram(
201 202
            train_prog).with_data_parallel(loss_name=loss.name,
                                           places=device_list)
203

204 205
        if use_cuda:
            place = paddle.CUDAPlace(0)
206 207 208
        elif use_xpu:
            place = paddle.XPUPlace(0)
            compiled_prog = train_prog
209 210 211 212 213 214 215
        elif use_npu:
            place = paddle.NPUPlace(0)
            compiled_prog = train_prog
        else:
            place = paddle.CPUPlace()

        exe = paddle.static.Executor(place)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        exe.run(startup_prog)
        exe.run(compiled_prog,
                feed={input.name: _prepare_data(len(device_list))},
                fetch_list=[loss.name])
    paddle.disable_static()


def run_check():
    """
    Check whether PaddlePaddle is installed correctly and running successfully
    on your system.

    Examples:
        .. code-block:: python

            import paddle

            paddle.utils.run_check()
            # Running verify PaddlePaddle program ...
            # W1010 07:21:14.972093  8321 device_context.cc:338] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 11.0, Runtime API Version: 10.1
            # W1010 07:21:14.979770  8321 device_context.cc:346] device: 0, cuDNN Version: 7.6.
            # PaddlePaddle works well on 1 GPU.
            # PaddlePaddle works well on 8 GPUs.
            # PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
    """

    print("Running verify PaddlePaddle program ... ")

244 245 246 247
    use_cuda = False
    use_xpu = False
    use_npu = False

248 249
    if paddle.is_compiled_with_cuda():
        use_cuda = _is_cuda_available()
250 251
    elif paddle.is_compiled_with_xpu():
        use_xpu = _is_xpu_available()
252 253
    elif paddle.is_compiled_with_npu():
        use_npu = _is_npu_available()
254

255 256 257
    if use_cuda:
        device_str = "GPU"
        device_list = paddle.static.cuda_places()
258 259 260
    elif use_xpu:
        device_str = "XPU"
        device_list = paddle.static.xpu_places()
261 262 263
    elif use_npu:
        device_str = "NPU"
        device_list = paddle.static.npu_places()
264 265 266 267 268
    else:
        device_str = "CPU"
        device_list = paddle.static.cpu_places(device_count=2)
    device_count = len(device_list)

269 270
    _run_static_single(use_cuda, use_xpu, use_npu)
    _run_dygraph_single(use_cuda, use_xpu, use_npu)
271 272 273
    print("PaddlePaddle works well on 1 {}.".format(device_str))

    try:
274
        _run_static_parallel(use_cuda, use_xpu, use_npu, device_list)
275 276
        print("PaddlePaddle works well on {} {}s.".format(
            device_count, device_str))
277 278 279 280 281 282 283 284 285
        print(
            "PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now."
        )
    except Exception as e:
        logging.warning(
            "PaddlePaddle meets some problem with {} {}s. This may be caused by:"
            "\n 1. There is not enough GPUs visible on your system"
            "\n 2. Some GPUs are occupied by other process now"
            "\n 3. NVIDIA-NCCL2 is not installed correctly on your system. Please follow instruction on https://github.com/NVIDIA/nccl-tests "
286 287
            "\n to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html"
            .format(device_count, device_str))
288 289 290 291 292

        logging.warning("\n Original Error is: {}".format(e))
        print("PaddlePaddle is installed successfully ONLY for single {}! "
              "Let's start deep learning with PaddlePaddle now.".format(
                  device_str))