primrules.py 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle

from .primreg import REGISTER_ORIG2PRIM, REGISTER_PRIM2ORIG, REGISTER_JVP, REGISTER_TRANSPOSE
from .primreg import (lookup_fn, lookup_orig2prim, lookup_prim2orig, lookup_jvp,
                      lookup_transpose, op_position_inputs, op_position_output)
from .primops import (neg, add, sub, mul, div, sqrt, tanh, reshape, broadcast,
                      transpose, split, concat, reduce, matmul, slice_select,
                      slice_assign, gather, scatter_add, fill_const, set_value)
from .utils import get_input_var_list, get_output_var_list, INT_DTYPE_2_STRING


def _orig2prim(op, *args):
    _lowerrule = lookup_orig2prim(op.type)
    return _lowerrule(op, *args)


def _prim2orig(op, *args):
    _lowerrule = lookup_prim2orig(op.type)
    return _lowerrule(op, *args)


def _jvp(op, *args):
    _jvprule = lookup_jvp(op.type)
    return _jvprule(op, *args)


def _transpose(op, dot_checker, *args):
    _transposerule = lookup_transpose(op.type)
    return _transposerule(op, dot_checker, *args)


def linear_jvp(op, *args, **kwargs):
    fn = lookup_fn(op.type)
    out_dot = fn(*args, **kwargs)
    return out_dot


## Register orig2prim lower rules
"""
These original ops are fully supported:

elementwise_add
elementwise_sub
elementwise_mul
tanh
fill_zeros_like
sum
index_select
scale
assign
sqrt

These original ops are partially supported:

matmul_v2
reshape2
concat
slice
p_norm
"""


@REGISTER_ORIG2PRIM('elementwise_add')
def elementwise_add_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
82 83 84
        scale_x = fill_const(shape=x.shape,
                             dtype=x.dtype,
                             value=op.attr('Scale_x'))
85 86
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
87 88 89
        scale_y = fill_const(shape=y.shape,
                             dtype=y.dtype,
                             value=op.attr('Scale_y'))
90 91 92
        y = mul(y, scale_y)
    z = add(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
93 94 95
        scale_out = fill_const(shape=z.shape,
                               dtype=z.dtype,
                               value=op.attr('Scale_out'))
96 97 98 99 100 101 102 103 104
        z = mul(z, scale_out)
    return z


@REGISTER_ORIG2PRIM('elementwise_sub')
def elementwise_sub_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
105 106 107
        scale_x = fill_const(shape=x.shape,
                             dtype=x.dtype,
                             value=op.attr('Scale_x'))
108 109
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
110 111 112
        scale_y = fill_const(shape=y.shape,
                             dtype=y.dtype,
                             value=op.attr('Scale_y'))
113 114 115
        y = mul(y, scale_y)
    z = sub(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
116 117 118
        scale_out = fill_const(shape=z.shape,
                               dtype=z.dtype,
                               value=op.attr('Scale_out'))
119 120 121 122 123 124 125 126 127
        z = mul(z, scale_out)
    return z


@REGISTER_ORIG2PRIM('elementwise_mul')
def elementwise_mul_orig2prim(op, x, y):
    if x.shape != y.shape:
        y = broadcast(y, shape=x.shape)
    if op.attr('Scale_x') - 1.0 > 1e-5:
128 129 130
        scale_x = fill_const(shape=x.shape,
                             dtype=x.dtype,
                             value=op.attr('Scale_x'))
131 132
        x = mul(x, scale_x)
    if op.attr('Scale_y') - 1.0 > 1e-5:
133 134 135
        scale_y = fill_const(shape=y.shape,
                             dtype=y.dtype,
                             value=op.attr('Scale_y'))
136 137 138
        y = mul(y, scale_y)
    z = mul(x, y)
    if op.attr('Scale_out') - 1.0 > 1e-5:
139 140 141
        scale_out = fill_const(shape=z.shape,
                               dtype=z.dtype,
                               value=op.attr('Scale_out'))
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        z = mul(z, scale_out)
    return z


@REGISTER_ORIG2PRIM('tanh')
def tanh_orig2prim(op, x):
    return tanh(x)


@REGISTER_ORIG2PRIM('fill_zeros_like')
def fill_zeros_like_orig2prim(op, x):
    return fill_const(value=0.0, shape=x.shape, dtype=x.dtype)


@REGISTER_ORIG2PRIM('sum')
def sum_orig2prim(op, xs):
    x0 = xs[0]
    for x in xs[1:]:
        x0 = add(x0, x)
    return x0


@REGISTER_ORIG2PRIM('index_select')
def index_select_orig2prim(op, index_t, x):
    return gather(x, indextensor=index_t, axis=op.attr('dim'))


@REGISTER_ORIG2PRIM('scale')
def scale_orig2prim(op, scale_t, x):
    if scale_t is None:
172 173 174
        scale_t = fill_const(shape=x.shape,
                             dtype=x.dtype,
                             value=op.attr('scale'))
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    bias_t = fill_const(shape=x.shape, dtype=x.dtype, value=op.attr('bias'))
    if op.attr('bias_after_scale'):
        return add(mul(x, scale_t), bias_t)
    else:
        return mul(add(x, bias_t), scale_t)


@REGISTER_ORIG2PRIM('assign')
def assign_orig2prim(op, x):
    zero_t = fill_const(shape=x.shape, dtype=x.dtype, value=0.0)
    return add(x, zero_t)


@REGISTER_ORIG2PRIM('sqrt')
def sqrt_orig2prim(op, x):
    return sqrt(x)


@REGISTER_ORIG2PRIM('matmul_v2')
def matmul_v2_orig2prim(op, x, y):
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def trans(shape):
        ret = [i for i in range(len(shape))]
        ret[-1], ret[-2] = ret[-2], ret[-1]
        return ret

    assert len(x.shape) < 4 and len(
        y.shape) < 4, 'Do not support multi batchsize dimensions currently.'

    if len(x.shape) == 1:
        x = broadcast(x, shape=[1, x.shape[0]])
    if len(y.shape) == 1:
        y = broadcast(y, shape=[y.shape[0], 1])
    if op.attr('trans_x'):
        x = transpose(x, axis=trans(x.shape))
    if op.attr('trans_y'):
        y = transpose(y, axis=trans(y.shape))
    return matmul(x, y)


## NOTE(lml): The second output of reshape2 Xshape, which is only used in reshape2_grad, is meanlingless in new autograd mechanism, thus we use a zero tensor instead.
@REGISTER_ORIG2PRIM('reshape2')
def reshape2_orig2prim(op, shape_t, shape_tl, x):
    assert shape_t is None, 'Can not lower reshape2 into prim ops with shapetensor.'
    assert shape_tl is None, 'Can not lower reshape2 into prim ops with shapetensorlist.'
    y, xshape = get_output_var_list(op)
221 222 223
    return reshape(x, shape=y.shape), fill_const(shape=xshape.shape,
                                                 dtype=xshape.dtype,
                                                 value=0.0)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249


@REGISTER_ORIG2PRIM('concat')
def concat_orig2prim(op, axis_t, xs):
    assert axis_t is None, 'Can not lower concat into prim ops with axistensor.'
    return concat(xs, axis=op.attr('axis'))


@REGISTER_ORIG2PRIM('slice')
def slice_orig2prim(op, ends_t, ends_tl, x, starts_t, starts_tl):
    assert starts_t is None, 'Can not lower concat into prim ops with startstensor.'
    assert ends_t is None, 'Can not lower concat into prim ops with endstensor.'
    assert starts_tl is None, 'Can not lower concat into prim ops with startstensorlist.'
    assert ends_tl is None, 'Can not lower concat into prim ops with endstensorlist.'
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = [1 for _ in starts]
    axis = op.attr('axes')
    y = slice_select(x, starts=starts, ends=ends, strides=strides, axis=axis)
    if op.attr('decrease_axis'):
        y = reshape(y, shape=get_output_var_list(op)[0].shape)
    return y


@REGISTER_ORIG2PRIM('p_norm')
def p_norm_orig2prim(op, x):
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    def num_el(shape):
        n = 1
        for s in shape:
            n = n * s
        return n

    assert op.attr(
        'asvector'), 'Only support lower pnorm when asvector=True currently'
    if len(x.shape) > 1:
        x = reshape(x, shape=[num_el(x.shape)])

    if abs(op.attr('porder') - 2.0) < 1e-5:
        return sqrt(reduce(mul(x, x), axis=[0]))
    elif abs(op.attr('porder') - 1.0) < 1e-5:
        return reduce(sqrt(mul(x, x)), axis=[0])
    else:
        raise RuntimeError('Only support lower l2/l1 norm currently')


## Register prim2orig lower rules


@REGISTER_PRIM2ORIG('add_p')
def add_prim2orig(op, x, y):
    return paddle.add(x, y)


@REGISTER_PRIM2ORIG('sub_p')
def sub_prim2orig(op, x, y):
    return paddle.subtract(x, y)


@REGISTER_PRIM2ORIG('mul_p')
def mul_prim2orig(op, x, y):
    return paddle.multiply(x, y)


@REGISTER_PRIM2ORIG('div_p')
def div_prim2orig(op, x, y):
    return paddle.divide(x, y)


@REGISTER_PRIM2ORIG('sqrt_p')
def sqrt_prim2orig(op, x):
    return paddle.sqrt(x)


@REGISTER_PRIM2ORIG('tanh_p')
def tanh_prim2orig(op, x):
    return paddle.tanh(x)


@REGISTER_PRIM2ORIG('reshape_p')
def reshape_prim2orig(op, x):
    return paddle.reshape(x, shape=op.attr('shape'))


@REGISTER_PRIM2ORIG('broadcast_p')
def broadcast_prim2orig(op, x):
    return paddle.broadcast_to(x, shape=op.attr('shape'))


@REGISTER_PRIM2ORIG('transpose_p')
def transpose_prim2orig(op, x):
    return paddle.transpose(x, perm=op.attr('axis'))


@REGISTER_PRIM2ORIG('split_p')
def split_prim2orig(op, x):
    num_or_sections = op.attr('num_or_sections')
    if len(num_or_sections) == 1:
        num_or_sections = num_or_sections[0]
323 324 325
    return paddle.split(x,
                        num_or_sections=num_or_sections,
                        axis=op.attr('axis'))
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344


@REGISTER_PRIM2ORIG('concat_p')
def concat_prim2orig(op, xs):
    return paddle.concat(xs, axis=op.attr('axis'))


@REGISTER_PRIM2ORIG('reduce_p')
def reduce_prim2orig(op, x):
    return paddle.sum(x, axis=op.attr('axis'), keepdim=op.attr('keepdim'))


@REGISTER_PRIM2ORIG('matmul_p')
def matmul_prim2orig(op, x, y):
    return paddle.matmul(x, y)


@REGISTER_PRIM2ORIG('slice_select_p')
def slice_select_prim2orig(op, x):
345 346 347 348 349
    return paddle.strided_slice(x,
                                axes=op.attr('axis'),
                                starts=op.attr('starts'),
                                ends=op.attr('ends'),
                                strides=op.attr('strides'))
350 351 352 353 354


@REGISTER_PRIM2ORIG('slice_assign_p')
def slice_assign_prim2orig(op, x, y):
    x_copy = paddle.assign(x)
355 356 357 358 359 360 361
    return set_value(x_copy,
                     y,
                     axis=op.attr('axis'),
                     starts=op.attr('starts'),
                     ends=op.attr('ends'),
                     strides=op.attr('strides'),
                     out=x_copy)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378


@REGISTER_PRIM2ORIG('gather_p')
def gather_prim2orig(op, index_t, x):
    return paddle.gather(x, index_t, axis=op.attr('axis'))


@REGISTER_PRIM2ORIG('scatter_add_p')
def scatter_add_prim2orig(op, index_t, x, y):
    assert op.attr('axis') == 0, 'Only support axis==0 currently'
    zeros = paddle.zeros_like(x=x, dtype=x.dtype)
    tmp = paddle.scatter(x=zeros, index=index_t, updates=y, overwrite=False)
    return paddle.add(x, tmp)


@REGISTER_PRIM2ORIG('fill_constant_p')
def fill_constant_prim2orig(op):
379 380 381
    return paddle.full(shape=op.attr('shape'),
                       fill_value=op.attr('value'),
                       dtype=INT_DTYPE_2_STRING[op.attr('dtype')])
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527


## Register linearize rules
@REGISTER_JVP('add_p')
def add_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return y_dot
    elif y_dot is None:
        return x_dot
    else:
        return linear_jvp(op, x_dot, y_dot)


@REGISTER_JVP('sub_p')
def sub_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return neg(y_dot)
    elif y_dot is None:
        return x_dot
    else:
        return linear_jvp(op, x_dot, y_dot)


@REGISTER_JVP('mul_p')
def mul_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if x_dot is None:
        return mul(x, y_dot)
    elif y_dot is None:
        return mul(x_dot, y)
    else:
        t1, t2 = mul(x_dot, y), mul(x, y_dot)
        z_dot = add(t1, t2)
        return z_dot


@REGISTER_JVP('div_p')
def div_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if y_dot is None:
        return div(x_dot, y)
    elif x_dot is None:
        return neg(div(mul(x, y_dot), mul(y, y)))
    else:
        t1 = div(x_dot, y)
        t2 = div(mul(x, y_dot), mul(y, y))
        return sub(t1, t2)


@REGISTER_JVP('sqrt_p')
def sqrt_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    c2 = fill_const(value=2.0, shape=y.shape, dtype=y.dtype)
    y_dot = div(x_dot, mul(c2, y))
    return y_dot


@REGISTER_JVP('tanh_p')
def tanh_jvp(op, x_dot):
    if x_dot is None:
        return None
    y = op_position_output(op)
    c1 = fill_const(value=1.0, shape=y.shape, dtype=y.dtype)
    y_dot = mul(x_dot, sub(c1, mul(y, y)))
    return y_dot


@REGISTER_JVP('reshape_p')
def reshape_jvp(op, x_dot):
    if x_dot is None:
        return None
    shape = op.attr('shape')
    return linear_jvp(op, x_dot, shape=shape)


@REGISTER_JVP('broadcast_p')
def broadcast_jvp(op, x_dot):
    if x_dot is None:
        return None
    shape = op.attr('shape')
    return linear_jvp(op, x_dot, shape=shape)


@REGISTER_JVP('transpose_p')
def transpose_jvp(op, x_dot):
    if x_dot is None:
        return None
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, axis=axis)


@REGISTER_JVP('split_p')
def split_jvp(op, x_dot):
    if x_dot is None:
        return None
    num_or_sections = op.attr('num_or_sections')
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, num_or_sections=num_or_sections, axis=axis)


@REGISTER_JVP('concat_p')
def concat_jvp(op, xs_dot):
    if xs_dot is None:
        return None
    axis = op.attr('axis')
    return linear_jvp(op, xs_dot, axis=axis)


@REGISTER_JVP('reduce_p')
def reduce_jvp(op, x_dot):
    if x_dot is None:
        return None
    axis = op.attr('axis')
    keepdim = op.attr('keepdim')
    return linear_jvp(op, x_dot, axis=axis, keepdim=keepdim)


@REGISTER_JVP('matmul_p')
def matmul_jvp(op, x_dot, y_dot):
    if x_dot is None and y_dot is None:
        return None
    x, y = op_position_inputs(op)
    if x_dot is None:
        return matmul(x, y_dot)
    elif y_dot is None:
        return matmul(x_dot, y)
    else:
        t1 = matmul(x, y_dot)
        t2 = matmul(x_dot, y)
        return add(t1, t2)


@REGISTER_JVP('slice_select_p')
def slice_select_jvp(op, x_dot):
    if x_dot is None:
        return x_dot
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
528 529 530 531 532 533
    return linear_jvp(op,
                      x_dot,
                      axis=axis,
                      starts=starts,
                      ends=ends,
                      strides=strides)
534 535 536 537 538 539 540 541 542 543 544 545 546


@REGISTER_JVP('slice_assign_p')
def slice_assign_jvp(op, x_dot, y_dot):
    if x_dot is None:
        assert y_dot is None, 'y_dot must be None.'
        return None
    else:
        assert y_dot is not None, 'y_dot should not be None.'
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
547 548 549 550 551 552 553
    return linear_jvp(op,
                      x_dot,
                      y_dot,
                      axis=axis,
                      starts=starts,
                      ends=ends,
                      strides=strides)
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698


@REGISTER_JVP('gather_p')
def gather_jvp(op, x_dot, indextensor):
    if x_dot is None:
        return None
    _, indextensor = op_position_inputs(op)
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, indextensor, axis=axis)


@REGISTER_JVP('scatter_add_p')
def scatter_add_jvp(op, x_dot, y_dot):
    if x_dot is None:
        return None
    _, _, indextensor = op_position_inputs(op)
    axis = op.attr('axis')
    return linear_jvp(op, x_dot, y_dot, indextensor, axis=axis)


## Register transpose rules


@REGISTER_TRANSPOSE('add_p')
def add_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) or check_dot(y), (
        f'(check_dot(x) or check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    x_bar = z_bar if check_dot(x) else None
    y_bar = z_bar if check_dot(y) else None
    return x_bar, y_bar


@REGISTER_TRANSPOSE('sub_p')
def sub_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) or check_dot(y), (
        f'(check_dot(x) or check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    x_bar = z_bar if check_dot(x) else None
    y_bar = neg(z_bar) if check_dot(y) else None
    return x_bar, y_bar


@REGISTER_TRANSPOSE('mul_p')
def mul_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) ^ check_dot(y), (
        f'(check_dot(x) ^ check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    if check_dot(x):
        return mul(z_bar, y), None
    else:
        return None, mul(x, z_bar)


@REGISTER_TRANSPOSE('div_p')
def div_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert not check_dot(y), 'check_dot(y) must be False'
    x_bar = div(z_bar, y) if check_dot(x) else None
    return x_bar, None


@REGISTER_TRANSPOSE('reshape_p')
def reshape_transpose(op, check_dot, y_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    return reshape(y_bar, shape=x.shape)


@REGISTER_TRANSPOSE('broadcast_p')
def broadcast_transpose(op, check_dot, y_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    bat = len(y_bar.shape) - len(x.shape)
    axis = list(range(bat))
    keepdim = [(bat + i) for i, s in enumerate(x.shape) if s == 1]
    axis += keepdim
    # TODO: Change it. keepdim boolean
    out = reduce(y_bar, axis=axis, keepdim=False)
    return reshape(out, x.shape)


@REGISTER_TRANSPOSE('transpose_p')
def transpose_transpose(op, check_dot, y_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    reordered = sorted((k, i) for i, k in enumerate(axis))
    axis = [i for k, i in reordered]
    return transpose(y_bar, axis=axis)


@REGISTER_TRANSPOSE('split_p')
def split_transpose(op, check_dot, ys_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    return concat(ys_bar, axis=op.attr('axis'))


@REGISTER_TRANSPOSE('concat_p')
def concat_transpose(op, check_dot, y_bar):
    xs, = op_position_inputs(op)
    for x in xs:
        assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    sections = [x.shape[axis] for x in xs]
    return split(y_bar, num_or_sections=sections, axis=axis)


@REGISTER_TRANSPOSE('reduce_p')
def reduce_transpose(op, check_dot, y_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    axes = op.attr('axis')
    shape = tuple(1 if i in axes else size for i, size in enumerate(x.shape))
    t = reshape(y_bar, shape=shape)
    return broadcast(t, shape=x.shape)


@REGISTER_TRANSPOSE('matmul_p')
def matmul_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) ^ check_dot(y), (
        f'(check_dot(x) ^ check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    # TODO: replace it. this is hacky
    axis = [1, 0] if len(x.shape) == 2 else [0, 2, 1]
    if check_dot(x):
        return matmul(z_bar, transpose(y, axis=axis)), None
    else:
        return None, matmul(transpose(x, axis=axis), z_bar)


@REGISTER_TRANSPOSE('slice_select_p')
def slice_select_transpose(op, check_dot, y_bar):
    x, = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    zeros = fill_const(value=0.0, shape=x.shape, dtype=x.dtype)
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
699 700 701 702 703 704
    return slice_assign(zeros,
                        y_bar,
                        axis=axis,
                        starts=starts,
                        ends=ends,
                        strides=strides)
705 706 707 708 709 710 711 712 713 714 715 716 717


@REGISTER_TRANSPOSE('slice_assign_p')
def slice_assign_transpose(op, check_dot, z_bar):
    x, y = op_position_inputs(op)
    assert check_dot(x) and check_dot(y), (
        f'(check_dot(x) and check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    axis = op.attr('axis')
    starts = op.attr('starts')
    ends = op.attr('ends')
    strides = op.attr('strides')
718 719 720 721 722 723 724 725 726 727 728
    x_bar = slice_assign(z_bar,
                         zeros,
                         axis=axis,
                         starts=starts,
                         ends=ends,
                         strides=strides)
    y_bar = slice_select(z_bar,
                         axis=axis,
                         starts=starts,
                         ends=ends,
                         strides=strides)
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    return x_bar, y_bar


@REGISTER_TRANSPOSE('gather_p')
def gather_transpose(op, check_dot, y_bar):
    x, indextensor = op_position_inputs(op)
    assert check_dot(x), 'check_dot(x) must be True'
    axis = op.attr('axis')
    zeros = fill_const(0.0, x.shape, x.dtype)
    x_bar = scatter_add(zeros, y_bar, indextensor, axis=axis)
    indextensor_bar = None
    return x_bar, indextensor_bar


@REGISTER_TRANSPOSE('scatter_add_p')
def scatter_add_transpose(op, check_dot, z_bar):
    x, y, indextensor = op_position_inputs(op)
    assert check_dot(x) and check_dot(y), (
        f'(check_dot(x) and check_dot(y)) must be True, '
        f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.')
    axis = op.attr('axis')
    zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype)
    x_bar = scatter_add(z_bar, zeros, indextensor, axis=axis)
    y_bar = gather(z_bar, indextensor, axis=axis)
    indextensor_bar = None
    return x_bar, y_bar, indextensor_bar