test_unique_with_counts.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
20
import paddle.fluid as fluid
21 22 23 24 25
import paddle.fluid.core as core
from paddle.fluid.op import Operator


class TestUniqueWithCountsOp(OpTest):
26

27 28 29 30 31 32 33 34
    def setUp(self):
        self.op_type = "unique_with_counts"
        self.init_config()

    def test_check_output(self):
        self.check_output()

    def init_config(self):
35 36 37
        self.inputs = {
            'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'),
        }
38 39
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
40 41 42
            'Out': np.array([2, 3, 1, 5], dtype='int64'),
            'Index': np.array([0, 1, 1, 2, 3, 1], dtype='int32'),
            'Count': np.array([1, 3, 1, 1], dtype='int32')
43 44 45 46
        }


class TestOne(TestUniqueWithCountsOp):
47

48
    def init_config(self):
49 50 51
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
52 53
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
54 55 56
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
            'Count': np.array([1], dtype='int32')
57 58 59 60
        }


class TestRandom(TestUniqueWithCountsOp):
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def init_config(self):
        input_data = np.random.randint(0, 100, (2000, ), dtype='int64')
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
            'Count': target_count
        }


85
class TestUniqueWithCountsRaiseError(unittest.TestCase):
86

87
    def test_errors(self):
88

89 90 91 92 93 94 95 96 97 98 99 100
        def test_type():
            fluid.layers.unique_with_counts([10])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data = fluid.data(shape=[10], dtype="float16", name="input")
            fluid.layers.unique_with_counts(data)

        self.assertRaises(TypeError, test_dtype)


101 102 103
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestOneGPU(TestUniqueWithCountsOp):
104

105
    def init_config(self):
106 107 108
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
109 110
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
111 112 113
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
            'Count': np.array([1], dtype='int32')
114 115 116 117 118 119 120 121 122 123 124
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRandomGPU(TestUniqueWithCountsOp):
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    def init_config(self):
        input_data = np.random.randint(0, 100, (2000, ), dtype='int64')
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
            'Count': target_count
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


154 155
if __name__ == "__main__":
    unittest.main()