test_imperative_triple_grad.py 12.1 KB
Newer Older
W
Weilong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.vision.models import resnet50, resnet101
import unittest
from unittest import TestCase
import numpy as np
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
W
Weilong Wu 已提交
23 24 25


def _dygraph_guard_(func):
26

W
Weilong Wu 已提交
27
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
28
        if fluid._non_static_mode():
W
Weilong Wu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    np.random.seed(2021)
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


46
class TestDygraphTripleGradMatmul(TestCase):
47

48 49 50
    def test_matmul_triple_grad(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
51 52 53 54 55 56
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
57 58
            out = paddle.matmul(x, y, False, False)

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            new_out_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_x_g, new_y_g = paddle.grad([out], [x, y], [new_out_g],
                                           retain_graph=True,
                                           create_graph=True)

            new_x_g_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_y_g_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_a, new_b, new_c = paddle.grad([new_x_g, new_y_g],
                                              [x, y, new_out_g],
                                              [new_x_g_g, new_y_g_g],
                                              retain_graph=True,
                                              create_graph=True)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

            new_a.backward()

            out_ref = np.ones([3, 3]) * 12.0
            self.assertTrue(np.array_equal(out.numpy(), out_ref))

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(np.array_equal(new_x_g.numpy(), new_x_g_ref))
            self.assertTrue(np.array_equal(new_y_g.numpy(), new_y_g_ref))

            new_a_ref = np.ones([3, 3]) * 3.0
            new_b_ref = np.ones([3, 3]) * 3.0
            new_c_ref = np.ones([3, 3]) * 12.0

            self.assertTrue(np.array_equal(new_a.numpy(), new_a_ref))
            self.assertTrue(np.array_equal(new_b.numpy(), new_b_ref))
            self.assertTrue(np.array_equal(new_c.numpy(), new_c_ref))

            x_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(x.grad.numpy(), x_grad_ref))

            y_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(y.grad.numpy(), y_grad_ref))

            new_out_g_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(
                np.array_equal(new_out_g.grad.numpy(), new_out_g_ref))

            new_x_g_g_ref = np.ones([3, 3]) * 0.0
            new_y_g_g_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(
                np.array_equal(new_x_g_g.grad.numpy(), new_x_g_g_ref))
            self.assertTrue(
                np.array_equal(new_y_g_g.grad.numpy(), new_y_g_g_ref))


W
Weilong Wu 已提交
114
class TestDygraphTripleGrad(TestCase):
115

W
Weilong Wu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 5]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
129 130 131 132 133 134 135
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
W
Weilong Wu 已提交
136 137

    @dygraph_guard
138
    def func_exception(self):
W
Weilong Wu 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
161 162
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
W
Weilong Wu 已提交
163 164 165 166 167

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)

    @dygraph_guard
168
    def func_example_with_gradient_and_create_graph(self):
W
Weilong Wu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        x = random_var(self.shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.shape).astype('float32')
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.shape).astype('float32')
        DDX = np.ones(self.shape).astype('float32')
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(double_grad_tmp3,
                                                    np.transpose(y_np))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

218
    def test_all_cases(self):
219
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
220 221 222
        self.func_exception()
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
223 224
            self.func_exception()
            self.func_example_with_gradient_and_create_graph()
225
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
226

W
Weilong Wu 已提交
227

228
class TestDygraphTripleGradBradcastCase(TestCase):
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def setUp(self):
        self.sort_sum_gradient = False
        self.x_shape = [3, 2, 2]
        self.y_shape = [1, 2, 2]
        self.z_shape = [2, 2]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
245 246 247 248 249 250 251
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
252 253

    @dygraph_guard
254
    def func_example_with_gradient_and_create_graph(self):
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        x = random_var(self.x_shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.y_shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.z_shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.x_shape).astype('float32')
274 275
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np, axes=(0, 2, 1)))
276 277 278 279 280 281
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.y_shape).astype('float32')
        DDX = np.ones(self.x_shape).astype('float32')
282 283
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY, axes=(0, 2, 1)))
284 285 286 287
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(
288
            double_grad_tmp3, np.transpose(y_np, axes=(0, 2, 1)))
289 290 291 292 293 294 295 296
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.x_shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
297 298
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np, axes=(0, 2, 1)))
299 300 301 302 303

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

304
    def test_all_cases(self):
305
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
306 307
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
308
            self.func_example_with_gradient_and_create_graph()
309
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
310

311

W
Weilong Wu 已提交
312 313
if __name__ == '__main__':
    unittest.main()