test_cvm_op.py 5.2 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from math import log
from math import exp
from op_test import OpTest
import unittest


T
tangwei12 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
def cvm_compute(X, item_width, use_cvm):
    cvm_offset = 0 if use_cvm else 2
    batch_size = X.shape[0]

    Y = np.ones([batch_size, item_width - cvm_offset], np.float32)

    for idx in range(batch_size):
        if use_cvm:
            Y[idx] = X[idx]
            Y[idx][0] = log(Y[idx][0] + 1)
            Y[idx][1] = log(Y[idx][1] + 1) - Y[idx][0]
        else:
            Y[idx] = X[idx][2:]

    return Y


def cvm_grad_compute(DY, CVM, item_width, use_cvm):
    batch_size = DY.shape[0]
    DX = np.ones([batch_size, item_width], np.float32)

    for idx in range(batch_size):
        DX[idx][0] = CVM[idx][0]
        DX[idx][1] = CVM[idx][1]

        if use_cvm:
            DX[idx][2:] = DY[idx][2:]
        else:
            DX[idx][2:] = DY[idx]
    return DX


class TestCVMOpWithLodTensor(OpTest):
H
heqiaozhi 已提交
55 56 57 58 59 60
    """
        Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
T
tangwei12 已提交
61 62
        self.use_cvm = True

H
hutuxian 已提交
63 64
        self.batch_size = 1
        self.item_width = 11
T
tangwei12 已提交
65

H
heqiaozhi 已提交
66 67
        lod = [[1]]
        self.inputs = {
H
hutuxian 已提交
68
            'X': (np.random.uniform(
69 70 71 72
                0, 1,
                [self.batch_size, self.item_width]).astype("float32"), lod),
            'CVM':
            np.array([[0.6, 0.4]]).astype("float32"),
H
heqiaozhi 已提交
73 74 75 76 77 78 79 80
        }
        self.attrs = {'use_cvm': False}
        out = []
        for index, emb in enumerate(self.inputs["X"][0]):
            out.append(emb[2:])
        self.outputs = {'Y': (np.array(out), lod)}

    def test_check_output(self):
H
hong 已提交
81
        self.check_output(check_dygraph=False)
H
heqiaozhi 已提交
82

H
hutuxian 已提交
83 84 85 86 87 88
    def test_check_grad(self):
        user_grads = np.array(
            [1.0 / (self.item_width - 2)] * self.item_width).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
89 90 91 92
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
93

H
heqiaozhi 已提交
94

T
tangwei12 已提交
95 96 97 98 99 100 101 102 103
class TestCVMOpWithOutLodTensor1(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = True

H
hutuxian 已提交
104 105
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
106

H
hutuxian 已提交
107 108 109 110 111
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
112 113 114 115 116 117

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
118
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
119

H
hutuxian 已提交
120 121 122 123 124 125
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array([1.0 / numel] * numel).reshape(
            (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
126 127 128 129
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
130

T
tangwei12 已提交
131 132 133 134 135 136 137 138 139 140

class TestCVMOpWithOutLodTensor2(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = False

H
hutuxian 已提交
141 142
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
143

H
hutuxian 已提交
144 145 146 147 148
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
149 150 151 152 153 154

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
155
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
156

H
hutuxian 已提交
157 158 159 160 161 162 163
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array(
            [1.0 / (self.batch_size * (self.item_width - 2))] * numel).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
164 165 166 167
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
168

T
tangwei12 已提交
169

H
heqiaozhi 已提交
170 171
if __name__ == '__main__':
    unittest.main()