tensor_parallel.py 1.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.dygraph.layers import Layer
from .meta_parallel_base import MetaParallelBase
17 18
from ..utils.hybrid_parallel_util import broadcast_dp_parameters
from ..utils.hybrid_parallel_util import broadcast_input_data
19
from ..utils.hybrid_parallel_util import broadcast_mp_parameters, broadcast_sharding_parameters
20
from ..utils.log_util import logger
21

22 23
__all__ = []

24

25
class TensorParallel(MetaParallelBase):
26

27
    def __init__(self, layers, hcg, **kwargs):
28
        super(TensorParallel, self).__init__(layers, hcg, **kwargs)
29 30

    def _prepare_for_model(self):
31
        logger.info("start broadcast mp parameters")
32
        broadcast_mp_parameters(self._layers, self._hcg)
33

34 35 36 37
        if self._hcg.get_sharding_parallel_world_size() > 1:
            logger.info("start broadcast sharding parameters")
            broadcast_sharding_parameters(self._layers, self._hcg)

38
        logger.info("start broadcast dp parameters")
39 40
        broadcast_dp_parameters(self._layers, self._hcg)

41 42
        logger.info("mp's parameters is ready")

43
    def _pre_forward(self, *inputs, **kwargs):
44
        logger.debug("mp start broadcast input data")
45
        return broadcast_input_data(self._hcg, *inputs, **kwargs)