pool_grad_kernel.h 6.6 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"

namespace phi {

template <typename T, typename Context>
void Pool2dGradKernel(const Context& ctx,
                      const DenseTensor& x,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      const std::vector<int>& kernel_size,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      bool ceil_mode,
                      bool exclusive,
                      const std::string& data_format,
                      const std::string& pooling_type,
                      bool global_pooling,
                      bool adaptive,
                      const std::string& padding_algorithm,
                      DenseTensor* dx);

template <typename T, typename Context>
void Pool2dGradGPUDNNKernel(const Context& ctx,
                            const DenseTensor& x,
                            const DenseTensor& out,
                            const DenseTensor& dout,
                            const std::vector<int>& kernel_size,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            bool ceil_mode,
                            bool exclusive,
                            const std::string& data_format,
                            const std::string& pooling_type,
                            bool global_pooling,
                            bool adaptive,
                            const std::string& padding_algorithm,
                            DenseTensor* dx);

template <typename T, typename Context>
void Pool2dDoubleGradKernel(const Context& ctx,
                            const DenseTensor& x,
                            const std::vector<int>& kernel_size,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            bool ceil_mode,
                            bool exclusive,
                            const std::string& data_format,
                            const std::string& pooling_type,
                            bool global_pooling,
                            bool adaptive,
                            const std::string& padding_algorithm,
                            DenseTensor* out);

template <typename T, typename Context>
void Pool2dDoubleGradGPUDNNKernel(const Context& ctx,
                                  const DenseTensor& x,
                                  const std::vector<int>& kernel_size,
                                  const std::vector<int>& strides,
                                  const std::vector<int>& paddings,
                                  bool ceil_mode,
                                  bool exclusive,
                                  const std::string& data_format,
                                  const std::string& pooling_type,
                                  bool global_pooling,
                                  bool adaptive,
                                  const std::string& padding_algorithm,
                                  DenseTensor* out);

template <typename T, typename Context>
void MaxPool2dWithIndexGradKernel(const Context& ctx,
                                  const DenseTensor& x,
                                  const DenseTensor& mask,
                                  const DenseTensor& dout,
                                  const std::vector<int>& kernel_size,
                                  const std::vector<int>& strides,
                                  const std::vector<int>& paddings,
                                  bool global_pooling,
                                  bool adaptive,
                                  DenseTensor* dx);

template <typename T, typename Context>
void Pool3dGradKernel(const Context& ctx,
                      const DenseTensor& x,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      const std::vector<int>& kernel_size,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      bool ceil_mode,
                      bool exclusive,
                      const std::string& data_format,
                      const std::string& pooling_type,
                      bool global_pooling,
                      bool adaptive,
                      const std::string& padding_algorithm,
                      DenseTensor* dx);

template <typename T, typename Context>
void Pool3dGradGPUDNNKernel(const Context& ctx,
                            const DenseTensor& x,
                            const DenseTensor& out,
                            const DenseTensor& dout,
                            const std::vector<int>& kernel_size,
                            const std::vector<int>& strides,
                            const std::vector<int>& paddings,
                            bool ceil_mode,
                            bool exclusive,
                            const std::string& data_format,
                            const std::string& pooling_type,
                            bool global_pooling,
                            bool adaptive,
                            const std::string& padding_algorithm,
                            DenseTensor* dx);

template <typename T, typename Context>
void MaxPool3dWithIndexGradKernel(const Context& ctx,
                                  const DenseTensor& x,
                                  const DenseTensor& mask,
                                  const DenseTensor& dout,
                                  const std::vector<int>& kernel_size,
                                  const std::vector<int>& strides,
                                  const std::vector<int>& paddings,
                                  bool global_pooling,
                                  bool adaptive,
                                  DenseTensor* dx);

}  // namespace phi