randperm_kernel.cu 6.0 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/randperm_kernel.h"

17 18 19 20 21 22 23 24 25 26
#ifdef __NVCC__
#include <curand_kernel.h>
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hiprand_kernel.h>
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
27
#include "paddle/phi/core/kernel_registry.h"
28 29 30
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/randint_kernel.h"
31

L
Leo Chen 已提交
32 33 34
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/memory/memcpy.h"

35 36
DECLARE_bool(use_curand);

L
Leo Chen 已提交
37 38
namespace phi {

39 40 41 42 43 44
template <typename keyT, typename dataT>
__global__ void SwapRepeatKernel(keyT* key_out_data,
                                 dataT* out_data,
                                 int n,
                                 uint64_t seed,
                                 uint64_t offset) {
45
  size_t idx = static_cast<size_t>(blockIdx.x * blockDim.x + threadIdx.x);
46
  if (idx >= n - 1) return;  // out of range
47

48 49
  bool is_first_repeat = false;
  if (key_out_data[idx] == key_out_data[idx + 1]) {
50
    if (idx == 0) {
51 52 53
      is_first_repeat = true;
    } else if (key_out_data[idx] != key_out_data[idx - 1]) {
      is_first_repeat = true;
54 55 56
    }
  }

57
  if (!is_first_repeat) return;
58 59 60

  int repeat_size = 1;
  for (int i = idx; i < n; ++i) {
61
    if (key_out_data[i] == key_out_data[i + 1]) {
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
      ++repeat_size;
    } else {
      break;
    }
  }

#ifdef __NVCC__
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, offset, &state);
  for (int i = repeat_size - 1; i > 0; i--) {
    uint32_t r = curand(&state) % (i + 1);
#elif __HIPCC__
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, offset, &state);
  for (int i = repeat_size - 1; i > 0; i--) {
    uint32_t r = hiprand(&state) % (i + 1);
#endif
    if (r != i) {
80 81 82
      dataT tmp = out_data[idx + i];
      out_data[idx + i] = out_data[idx + r];
      out_data[idx + r] = tmp;
83 84 85 86
    }
  }
}

L
Leo Chen 已提交
87
template <typename T, typename Context>
88 89
void RandpermRawKernel(
    const Context& dev_ctx, int n, DataType dtype, int seed, DenseTensor* out) {
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  DenseTensor key;
  RandintKernel<int, Context>(dev_ctx,
                              std::numeric_limits<int>::min(),
                              std::numeric_limits<int>::max(),
                              IntArray({n}),
                              phi::DataType::INT32,
                              &key);
  DenseTensor key_out = Empty<int, Context>(dev_ctx, IntArray({n}));

  DenseTensor range = Empty<T, Context>(dev_ctx, IntArray({n}));
  T* range_data = range.data<T>();
  funcs::ForRange<Context> for_range(dev_ctx, n);
  for_range([range_data] __device__(size_t idx) {
    range_data[idx] = static_cast<T>(idx);
  });

  out->Resize(phi::make_ddim({n}));
  T* out_data = dev_ctx.template Alloc<T>(out);

  // Refer to [Algorithm of randperm] https://osf.io/af2hy/ to
  // improve performance of radix sort.
  double n_d = static_cast<double>(n);
  int begin_bit = 0;
  int end_bit =
      std::ceil(std::log2(n_d - (6 * n_d * n_d + 1) / (12 * std::log(0.9))));

  size_t temp_storage_bytes = 0;
  cub::DeviceRadixSort::SortPairs<int, T>(nullptr,
                                          temp_storage_bytes,
                                          key.data<int>(),
                                          key_out.data<int>(),
                                          range.data<T>(),
                                          out_data,
                                          n,
                                          begin_bit,
                                          end_bit < 32 ? end_bit : 32,
                                          dev_ctx.stream());

  auto d_temp_storage = paddle::memory::Alloc(dev_ctx, temp_storage_bytes);
  cub::DeviceRadixSort::SortPairs<int, T>(d_temp_storage->ptr(),
                                          temp_storage_bytes,
                                          key.data<int>(),
                                          key_out.data<int>(),
                                          range.data<T>(),
                                          out_data,
                                          n,
                                          begin_bit,
                                          end_bit < 32 ? end_bit : 32,
                                          dev_ctx.stream());

  auto gen_cuda = dev_ctx.GetGenerator();
  auto seed_offset = gen_cuda->IncrementOffset(n);

  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n);
144 145 146 147
  SwapRepeatKernel<<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(
148
      key_out.data<int>(), out_data, n, seed_offset.first, seed_offset.second);
L
Leo Chen 已提交
149 150
}

151 152 153 154 155 156 157 158
template <typename T, typename Context>
void RandpermKernel(const Context& dev_ctx,
                    int n,
                    DataType dtype,
                    DenseTensor* out) {
  RandpermRawKernel<T>(dev_ctx, n, dtype, 0, out);
}

L
Leo Chen 已提交
159 160
}  // namespace phi

161 162 163 164 165 166 167 168 169
PD_REGISTER_KERNEL(randperm_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::RandpermRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

L
Leo Chen 已提交
170 171 172 173 174 175 176 177
PD_REGISTER_KERNEL(randperm,
                   GPU,
                   ALL_LAYOUT,
                   phi::RandpermKernel,
                   float,
                   double,
                   int,
                   int64_t) {}