sequence_softmax_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
16
#include <string>
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class SequenceSoftmaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmax");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceSoftmax");
28 29

    ctx->ShareDim("X", /*->*/ "Out");
30
    ctx->ShareLoD("X", /*->*/ "Out");
31
  }
32 33 34 35 36

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
37 38
    bool use_cudnn =
        ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
39
    bool runtime_cudnn_support = false;
40
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
41 42 43 44 45 46 47 48 49 50
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
51 52 53
    std::string data_format = ctx.HasAttr("data_format")
                                  ? ctx.Attr<std::string>("data_format")
                                  : "AnyLayout";
54
    return framework::OpKernelType(
55
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
56 57
        framework::StringToDataLayout(data_format), library_);
  }
58 59 60 61
};

class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override {
63 64 65 66 67 68
    AddInput("X",
             "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension "
             "of length 1.");
    AddOutput("Out",
              "(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
              "of length 1.");
69 70 71
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
72 73
        .SetDefault(false)
        .AsExtra();
74 75 76 77 78 79
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
80 81
        .SetDefault("AnyLayout")
        .AsExtra();
82
    AddComment(R"DOC(
83 84 85
Sequence Softmax Operator.

SequenceSoftmaxOp computes the softmax activation among all time-steps for each
86
sequence. The dimension of each time-step should be 1. Thus, the shape of
87 88
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.
89

90
The algorithm works as follows:
W
whs 已提交
91

92
    for i-th sequence in a mini-batch:
W
whs 已提交
93 94 95 96 97 98

$$
Out(X[lod[i]:lod[i+1]], :) = \
\frac{\exp(X[lod[i]:lod[i+1], :])} \
{\sum(\exp(X[lod[i]:lod[i+1], :]))}
$$
99 100 101

For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
102
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
103
and N turns out to be 7.
104

105 106 107 108 109 110 111 112
)DOC");
  }
};

class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

113
  void InferShape(framework::InferShapeContext* ctx) const override {
114 115 116 117 118 119 120 121 122
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceSoftmaxGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@GRAD", "SequenceSoftmaxGrad");

    auto out_dim = ctx->GetInputDim("Out");
    auto out_grad_dim = ctx->GetInputDim(framework::GradVarName("Out"));
123
    PADDLE_ENFORCE_EQ(
124 125 126 127 128 129
        out_dim, out_grad_dim,
        platform::errors::InvalidArgument(
            "The shape of Input(Out) and Input(Out@GRAD) of "
            "SequenceSoftmaxGrad operator do not match. The Input(Out)'s shape "
            "is [%s], the Input(Out@GRAD)'s shape is [%s].",
            out_dim, out_grad_dim));
130 131 132

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
133 134 135 136 137

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
138 139
    bool use_cudnn =
        ctx.HasAttr("use_cudnn") ? ctx.Attr<bool>("use_cudnn") : false;
140
    bool runtime_cudnn_support = false;
141
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
142 143 144 145 146 147 148 149 150 151
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
152 153 154
    std::string data_format = ctx.HasAttr("data_format")
                                  ? ctx.Attr<std::string>("data_format")
                                  : "AnyLayout";
155
    return framework::OpKernelType(
156
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace(),
157 158
        framework::StringToDataLayout(data_format), library_);
  }
159 160
};

161
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
162 163
    SequenceSoftmaxGradOpNoNeedBufferVarsInferer, "X");

164 165 166 167
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
168 169 170 171
REGISTER_OPERATOR(
    sequence_softmax, ops::SequenceSoftmaxOp, ops::SequenceSoftmaxOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
172 173
REGISTER_OPERATOR(sequence_softmax_grad, ops::SequenceSoftmaxGradOp,
                  ops::SequenceSoftmaxGradOpNoNeedBufferVarsInferer);
174 175
REGISTER_OP_CPU_KERNEL(
    sequence_softmax,
176 177
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
178 179
REGISTER_OP_CPU_KERNEL(
    sequence_softmax_grad,
180 181
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);