segment_pooling.cu 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
16 17 18

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
W
Wang Xin 已提交
19
#include "paddle/phi/backends/gpu/gpu_primitives.h"
20
#include "paddle/phi/core/tensor_utils.h"
21
#include "paddle/phi/kernels/funcs/gather.cu.h"
22
#include "paddle/phi/kernels/funcs/math_function.h"
23
#include "paddle/phi/kernels/funcs/segment_pooling.h"
24

25 26
namespace phi {
namespace funcs {
27

28
using Tensor = DenseTensor;
29 30

template <typename T, typename Index, int DimTileSize>
31 32
__global__ void SegmentSumIdsKernel(const Index* segment_ids,
                                    T* summed_ids,
33 34
                                    const Index input_length_size,
                                    const Index total_stripe_count) {
35
  CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
36 37
    const Index segment_offset = stripe_index;
    const Index dim_index_base = stripe_index * Index(DimTileSize);
38 39 40 41 42 43 44 45
    const Index actual_height =
        min(Index(DimTileSize), input_length_size - dim_index_base);

    Index first_segment_id = segment_ids[dim_index_base];
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
    }
46 47 48 49 50 51
    T sum = T(0);
    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      PADDLE_ENFORCE(current_segment_id >= last_segment_id,
                     "the segment ids should be sorted, but got "
                     "segment_ids[%d]:%d > segment_ids[%d]:%d.",
52 53 54 55
                     dim_index_base + j - 1,
                     dim_index_base + j,
                     last_segment_id,
                     current_segment_id);
56 57
      if (current_segment_id > last_segment_id) {
        for (Index interval_id = last_segment_id + 1;
58 59
             interval_id < current_segment_id;
             ++interval_id) {
60 61 62
          *(summed_ids + interval_id) = 0;
        }
        if (j > 0) {
63
          if (last_segment_id == first_segment_id) {
W
Wang Xin 已提交
64
            phi::CudaAtomicAdd(summed_ids + last_segment_id, sum);
65 66 67 68 69 70
          } else {
            *(summed_ids + last_segment_id) = sum;
          }
          sum = T(0);
        }
      }
71 72 73
      sum += T(1);
      last_segment_id = current_segment_id;
    }
W
Wang Xin 已提交
74
    phi::CudaAtomicAdd(summed_ids + last_segment_id, sum);
75 76 77 78
  }
}

template <typename T, typename Index, int DimTileSize>
79 80 81 82
__global__ void SegmentMeanKernel(const Index* segment_ids,
                                  const T* input,
                                  T* output,
                                  T* summed_ids,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                                  const Index input_length_size,
                                  const Index inner_dim_size,
                                  const Index output_length_size,
                                  const Index total_stripe_count) {
  CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
    const Index segment_offset = stripe_index % inner_dim_size;
    const Index dim_index_base =
        stripe_index / inner_dim_size * Index(DimTileSize);
    const Index actual_height =
        min(Index(DimTileSize), input_length_size - dim_index_base);

    Index first_segment_id = segment_ids[dim_index_base];
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
98 99 100 101 102
    }
    T sum = T(0);
    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      if (current_segment_id > last_segment_id) {
103 104
        // reset the interval value which do not have corresponding ids.
        for (Index interval_id = last_segment_id + 1;
105 106
             interval_id < current_segment_id;
             ++interval_id) {
107 108 109 110 111 112 113 114
          *(output + interval_id * inner_dim_size + segment_offset) = T(0);
        }

        if (j > 0) {
          Index output_index =
              last_segment_id * inner_dim_size + segment_offset;

          if (last_segment_id == first_segment_id) {
W
Wang Xin 已提交
115 116
            phi::CudaAtomicAdd(output + output_index,
                               sum / *(summed_ids + last_segment_id));
117 118 119 120
          } else {
            *(output + output_index) = sum / *(summed_ids + last_segment_id);
          }
          sum = T(0);
121 122 123 124 125
        }
      }
      sum += input[(dim_index_base + j) * inner_dim_size + segment_offset];
      last_segment_id = current_segment_id;
    }
126
    Index output_index = last_segment_id * inner_dim_size + segment_offset;
W
Wang Xin 已提交
127 128
    phi::CudaAtomicAdd(output + output_index,
                       sum / *(summed_ids + last_segment_id));
129 130 131 132
  }
}

template <typename T, typename Index, typename Helper, typename Pool>
133 134
__global__ void __launch_bounds__(1024, 1) SegmentOpsKernel(
    const Index* segment_ids, const T* input, T* output, Helper h, Pool pool) {
135 136 137
  CUDA_KERNEL_LOOP(stripe_index, h.total_stripe_count) {
    Index segment_offset, dim_index_base, actual_height;
    Index inner_dim_size = h.inner_dim_size;
138
    h.calculate(stripe_index, &segment_offset, &dim_index_base, &actual_height);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    T minmax = pool.initial();
    Index first_segment_id = segment_ids[dim_index_base];
    // -1 is for the start value when interval_id = 0
    Index last_segment_id = -1;
    if (dim_index_base > 0) {
      last_segment_id = segment_ids[dim_index_base - 1];
    }

    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      // ensure the segment_ids is sorted.
      PADDLE_ENFORCE(current_segment_id >= last_segment_id,
                     "The segment ids should be sorted, but got "
                     "segment_ids[%d]:%d > segment_ids[%d]:%d.",
154 155 156 157
                     dim_index_base + j - 1,
                     dim_index_base + j,
                     last_segment_id,
                     current_segment_id);
158 159 160 161

      if (current_segment_id > last_segment_id) {
        // reset the interval value which do not have corresponding ids.
        for (Index interval_id = last_segment_id + 1;
162 163
             interval_id < current_segment_id;
             ++interval_id) {
164
          *(output + interval_id * inner_dim_size + segment_offset) = T(0);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        }
        // don't update result when j=0
        if (j > 0) {
          const Index output_index =
              last_segment_id * inner_dim_size + segment_offset;
          if (last_segment_id == first_segment_id) {
            pool.atomic(output + output_index, minmax);
          } else {
            *(output + output_index) = minmax;
          }
          minmax = pool.initial();
        }
      }
      pool.compute(
          input[(dim_index_base + j) * inner_dim_size + segment_offset],
          &minmax);
      last_segment_id = current_segment_id;
    }
    const Index output_index =
        last_segment_id * inner_dim_size + segment_offset;
    pool.atomic(output + output_index, minmax);
  }
}

template <typename T, typename Index, typename Helper>
190 191 192 193 194 195
__global__ void SegmentIndexGradKernel(const Index* segment_ids,
                                       const T* input,
                                       const T* output,
                                       const T* out_grad,
                                       T* in_grad,
                                       Helper h) {
196 197
  CUDA_KERNEL_LOOP(stripe_index, h.total_stripe_count) {
    Index segment_offset, dim_index_base, actual_height;
198
    h.calculate(stripe_index, &segment_offset, &dim_index_base, &actual_height);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    for (Index j = 0; j < actual_height; j++) {
      Index current_segment_id = segment_ids[dim_index_base + j];
      Index input_index =
          (dim_index_base + j) * h.inner_dim_size + segment_offset;
      Index output_index =
          current_segment_id * h.inner_dim_size + segment_offset;
      if (input[input_index] == output[output_index]) {
        in_grad[input_index] = out_grad[output_index];
      }
    }
  }
}

template <class T>
class MaxPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; }
  DEVICE inline T atomic(T* address, const T val) {
W
Wang Xin 已提交
219
    return phi::CudaAtomicMax(address, val);
220 221 222 223 224 225 226 227 228
  }
};

template <class T>
class MinPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(FLT_MAX); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y < x ? *y : x; }
  DEVICE inline T atomic(T* address, const T val) {
W
Wang Xin 已提交
229
    return phi::CudaAtomicMin(address, val);
230 231 232 233 234 235 236 237 238
  }
};

template <class T>
class SumPool {
 public:
  DEVICE inline T initial() { return static_cast<T>(0); }
  DEVICE inline void compute(const T& x, T* y) { *y = *y + x; }
  DEVICE inline T atomic(T* address, const T val) {
W
Wang Xin 已提交
239
    return phi::CudaAtomicAdd(address, val);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  }
};

template <class T>
class ArrangeHelper {
 public:
  const T input_total_size;
  const T input_length_size;
  const T output_length_size;
  T inner_dim_size;
  T total_stripe_count;
  const T DimTileSize = 8;

  ArrangeHelper(T a, T b, T c)
      : input_total_size(a), input_length_size(b), output_length_size(c) {
    T input_outer_dim_num_stripe =
        (input_length_size + DimTileSize - 1) / DimTileSize;
    inner_dim_size = input_total_size / input_length_size;
    total_stripe_count = inner_dim_size * input_outer_dim_num_stripe;
  }

261 262 263 264
  DEVICE inline void calculate(T stripe_index,
                               T* segment_offset,
                               T* dim_index_base,
                               T* actual_height) {
265 266 267
    *segment_offset = stripe_index % inner_dim_size;
    *dim_index_base = stripe_index / inner_dim_size * DimTileSize;
    *actual_height = min(DimTileSize, input_length_size - *dim_index_base);
268 269 270 271
  }
};

template <typename T, typename Index>
272 273 274 275 276 277
void SegmentPoolCUDAGradFunctor(const phi::GPUContext& ctx,
                                const DenseTensor& input,
                                const DenseTensor& segment_ids,
                                const DenseTensor& output,
                                const DenseTensor& out_grad,
                                DenseTensor* in_grad,
278
                                const std::string pooltype = "SUM") {
279 280 281 282
  auto h = ArrangeHelper<Index>(
      input.numel(), segment_ids.dims()[0], output.dims()[0]);
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
283
  if (pooltype == "MAX" || pooltype == "MIN") {
284 285 286 287 288 289 290 291 292 293
    SegmentIndexGradKernel<T, Index, ArrangeHelper<Index>>
        <<<config.block_per_grid.x,
           config.thread_per_block.x,
           0,
           ctx.stream()>>>(segment_ids.data<Index>(),
                           input.data<T>(),
                           output.data<T>(),
                           out_grad.data<T>(),
                           in_grad->data<T>(),
                           h);
294
  } else {
295
    PADDLE_THROW(phi::errors::InvalidArgument(
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        "Unsupported segment pooling grad operation, Only MAX, MIN "
        "available, but got %s.",
        pooltype));
  }
}

template <typename T>
__global__ void SimpleDiv(T* x, const T* y, const int len, const int dim) {
  for (int i = blockIdx.x; i < len; i += gridDim.x) {
    __shared__ T y_i;
    auto base = i * dim;
    if (threadIdx.x == 0) {
      y_i = y[i];
    }
    __syncthreads();
    for (int j = threadIdx.x; j < dim; j += blockDim.x) {
      x[base + j] /= y_i;
    }
  }
}

template <typename T, typename IndexT>
318
class SegmentPoolFunctor<phi::GPUContext, T, IndexT> {
319
 public:
320 321 322 323 324
  void operator()(const phi::GPUContext& ctx,
                  const DenseTensor& input,
                  const DenseTensor& segment_ids,
                  DenseTensor* output,
                  DenseTensor* summed_ids = nullptr,
325
                  const std::string pooltype = "SUM") {
326 327
    if (pooltype == "MEAN") {
      // Sum the segment id num first
328
      IndexT DimTileSize = 8;
329 330 331
      auto input_length_size = segment_ids.numel();
      auto total_stripe_count =
          (input_length_size + DimTileSize - 1) / DimTileSize;
332 333
      auto config =
          phi::backends::gpu::GetGpuLaunchConfig1D(ctx, total_stripe_count);
334 335 336 337 338 339 340 341
      SegmentSumIdsKernel<T, IndexT, IndexT(8)>
          <<<config.block_per_grid.x,
             config.thread_per_block.x,
             0,
             ctx.stream()>>>(segment_ids.data<IndexT>(),
                             summed_ids->data<T>(),
                             input_length_size,
                             total_stripe_count);
342 343
    }

344 345 346 347
    auto h = ArrangeHelper<IndexT>(
        input.numel(), segment_ids.dims()[0], output->dims()[0]);
    auto config =
        phi::backends::gpu::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
348
    if (pooltype == "MEAN") {
349 350 351 352 353 354 355 356 357 358 359 360
      SegmentMeanKernel<T, IndexT, IndexT(8)>
          <<<config.block_per_grid.x,
             config.thread_per_block.x,
             0,
             ctx.stream()>>>(segment_ids.data<IndexT>(),
                             input.data<T>(),
                             output->data<T>(),
                             summed_ids->data<T>(),
                             h.input_length_size,
                             h.inner_dim_size,
                             h.output_length_size,
                             h.total_stripe_count);
361 362
    } else if (pooltype == "SUM") {
      SumPool<T> pool;
363 364 365 366 367 368 369 370 371
      SegmentOpsKernel<T, IndexT, ArrangeHelper<IndexT>, SumPool<T>>
          <<<config.block_per_grid.x,
             config.thread_per_block.x,
             0,
             ctx.stream()>>>(segment_ids.data<IndexT>(),
                             input.data<T>(),
                             output->data<T>(),
                             h,
                             pool);
372 373
    } else if (pooltype == "MAX") {
      MaxPool<T> pool;
374 375 376 377 378 379 380 381 382
      SegmentOpsKernel<T, IndexT, ArrangeHelper<IndexT>, MaxPool<T>>
          <<<config.block_per_grid.x,
             config.thread_per_block.x,
             0,
             ctx.stream()>>>(segment_ids.data<IndexT>(),
                             input.data<T>(),
                             output->data<T>(),
                             h,
                             pool);
383 384
    } else if (pooltype == "MIN") {
      MinPool<T> pool;
385 386 387 388 389 390 391 392 393
      SegmentOpsKernel<T, IndexT, ArrangeHelper<IndexT>, MinPool<T>>
          <<<config.block_per_grid.x,
             config.thread_per_block.x,
             0,
             ctx.stream()>>>(segment_ids.data<IndexT>(),
                             input.data<T>(),
                             output->data<T>(),
                             h,
                             pool);
394
    } else {
395
      PADDLE_THROW(phi::errors::InvalidArgument(
396 397 398 399 400 401 402 403
          "Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
          "available, but got %s.",
          pooltype));
    }
  }
};

template <typename T, typename IndexT>
404
class SegmentPoolGradFunctor<phi::GPUContext, T, IndexT> {
405
 public:
406 407 408 409 410 411
  void operator()(const phi::GPUContext& dev_ctx,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& out_grad,
                  const DenseTensor& segments,
                  DenseTensor* in_grad,
412
                  const paddle::optional<DenseTensor>& summed_ids,
413 414
                  const std::string pooltype = "SUM") {
    if (pooltype == "MAX" || pooltype == "MIN") {
415 416
      SegmentPoolCUDAGradFunctor<T, IndexT>(
          dev_ctx, input, segments, output, out_grad, in_grad, pooltype);
417
    } else if (pooltype == "MEAN") {
418 419 420
      DenseTensor mean_grad;
      mean_grad.Resize(input.dims());
      dev_ctx.template Alloc<T>(&mean_grad);
421
      phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, &mean_grad);
422 423
      int len = output.dims()[0];
      int dim = output.numel() / len;
424 425 426 427 428 429 430
      auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, len);
      SimpleDiv<T><<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(
          mean_grad.data<T>(), summed_ids->data<T>(), len, dim);
      phi::funcs::GPUGather<T, IndexT>(dev_ctx, mean_grad, segments, in_grad);
431
    } else if (pooltype == "SUM") {
432
      phi::funcs::GPUGather<T, IndexT>(dev_ctx, out_grad, segments, in_grad);
433
    } else {
434
      PADDLE_THROW(phi::errors::InvalidArgument(
435 436 437 438 439 440 441
          "Unsupported segment pooling operation, Only MEAN, SUM, MAX, MIN "
          "available, but got %s.",
          pooltype));
    }
  }
};

442
using GPU = phi::GPUContext;
443
using float16 = phi::dtype::float16;
444 445 446 447
template class SegmentPoolFunctor<GPU, float, int>;
template class SegmentPoolFunctor<GPU, float, int64_t>;
template class SegmentPoolFunctor<GPU, double, int>;
template class SegmentPoolFunctor<GPU, double, int64_t>;
448 449 450 451
template class SegmentPoolFunctor<GPU, int, int>;
template class SegmentPoolFunctor<GPU, int, int64_t>;
template class SegmentPoolFunctor<GPU, int64_t, int>;
template class SegmentPoolFunctor<GPU, int64_t, int64_t>;
452 453
template class SegmentPoolFunctor<GPU, float16, int>;
template class SegmentPoolFunctor<GPU, float16, int64_t>;
454

455 456 457 458
template class SegmentPoolGradFunctor<GPU, float, int>;
template class SegmentPoolGradFunctor<GPU, float, int64_t>;
template class SegmentPoolGradFunctor<GPU, double, int>;
template class SegmentPoolGradFunctor<GPU, double, int64_t>;
459 460 461 462
template class SegmentPoolGradFunctor<GPU, int, int>;
template class SegmentPoolGradFunctor<GPU, int, int64_t>;
template class SegmentPoolGradFunctor<GPU, int64_t, int>;
template class SegmentPoolGradFunctor<GPU, int64_t, int64_t>;
463 464
template class SegmentPoolGradFunctor<GPU, float16, int>;
template class SegmentPoolGradFunctor<GPU, float16, int64_t>;
465 466 467

}  // namespace funcs
}  // namespace phi