gaussian_random_op.cu 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
Q
qijun 已提交
16 17
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
22
#include "paddle/fluid/operators/distribution_helper.h"
23
#include "paddle/fluid/operators/fill_constant_op.h"
24
#include "paddle/fluid/operators/index_impl.cu.h"
Q
qijun 已提交
25

26 27
DECLARE_bool(use_curand);

Q
qijun 已提交
28 29 30 31 32 33 34
namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
35
  unsigned int offset_ = 0;
Q
qijun 已提交
36 37 38 39

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
40 41 42
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
43 44 45
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
46 47
    using MT = typename details::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(mean_, std_);
Y
yaoxuefeng 已提交
48 49
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
50 51
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
52 53 54 55
  }
};

template <typename T>
Y
Yu Yang 已提交
56
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
57 58 59
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
60
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
61
    bool seed_flag = false;
Q
qijun 已提交
62 63 64
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
65
      seed_flag = true;
Q
qijun 已提交
66
    }
Y
Yu Yang 已提交
67 68
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
69
    auto shape = GetShape(context);
70
    tensor->Resize(shape);
71 72 73 74

    auto& dev_cxt =
        context.template device_context<platform::CUDADeviceContext>();
    T* data = tensor->mutable_data<T>(dev_cxt.GetPlace());
75

76
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
77

78
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
79 80 81
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
82 83 84 85 86 87 88 89 90
      if (FLAGS_use_curand) {
        using MT = typename details::MPTypeTrait<T>::Type;
        distribution::normal_distribution<MT> dist;
        distribution::normal_transform<MT> trans(mean, std);
        distribution::distribution_and_transform<T>(dev_cxt, tensor, dist,
                                                    trans);
      } else {
        auto seed_offset = gen_cuda->IncrementOffset(1);
        int64_t gen_offset = size * seed_offset.second;
91 92 93
        auto func =
            GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset);
        IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
94
      }
Y
yaoxuefeng 已提交
95
    } else {
96 97
      auto func = GaussianGenerator<T>(mean, std, seed);
      IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
98
    }
Q
qijun 已提交
99 100 101
  }
};

102 103 104 105 106 107 108
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
109
    bool seed_flag = false;
110 111 112
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
113
      seed_flag = true;
114 115 116 117
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
118

119
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
120
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
121 122
    auto& dev_cxt =
        context.template device_context<platform::CUDADeviceContext>();
Y
yaoxuefeng 已提交
123 124 125

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
126
      int64_t gen_offset = size * seed_offset.second;
127 128 129
      auto func = GaussianGenerator<T>(mean, std, seed_offset.first,
                                       seed_offset.second);
      IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
130
    } else {
131 132
      auto func = GaussianGenerator<T>(mean, std, seed);
      IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
133
    }
134 135
  }
};
Q
qijun 已提交
136 137
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
138

139 140 141 142 143
REGISTER_OP_CUDA_KERNEL(
    gaussian_random,
    paddle::operators::GPUGaussianRandomKernel<paddle::platform::float16>,
    paddle::operators::GPUGaussianRandomKernel<float>,
    paddle::operators::GPUGaussianRandomKernel<double>);
144 145
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
146 147
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
148 149
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);