multi_devices_graph_builder.cc 5.6 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
19 20 21 22

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
23 24 25 26

namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
27 28

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
    const std::vector<Scope *> &local_scopes,
    platform::NCCLContextMap *nccl_ctxs)
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
      nccl_ctxs_(nccl_ctxs) {
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
    const std::vector<Scope *> &local_scopes)
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes) {
#endif
Y
Yu Yang 已提交
49 50 51 52 53
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
54 55 56
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  SSAGraph &result = *graph;
  result.vars_.resize(places_.size());

  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
    bool change_forward = false;
    if (!is_forwarding) {
      // FIXME(yy): Do not hard code like this
      if (op->OutputArgumentNames().size() == 1 &&
          op->OutputArgumentNames()[0] == GradVarName(loss_var_name_)) {
        continue;  // Drop fill 1. for backward coeff;
      }
    }

    for (size_t i = 0; i < places_.size(); ++i) {
      auto &p = places_[i];
      auto *s = local_scopes_[i];

      result.ops_.emplace_back(new ComputationOpHandle(*op, s, p));
      auto *op_handle = result.ops_.back().get();
      op_handle->dev_ctx_[p] = const_cast<platform::DeviceContext *>(
          platform::DeviceContextPool::Instance().Get(p));

      auto var_names = op->InputArgumentNames();

      for (auto &each_var_name : var_names) {
        VarHandle *var =
            CreateOrGetLatestVarHandle(&result, each_var_name, p, i);
        op_handle->AddInput(var);
      }
      var_names = op->OutputArgumentNames();

      for (auto &each_var_name : var_names) {
        CreateOpOutput(&result, op_handle, each_var_name, p, i);
      }

      if (is_forwarding) {
        if (var_names.size() == 1 && var_names[0] == loss_var_name_) {
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
          auto *communication_dev_ctx = nccl_ctxs_->DevCtx(p);
#else
          auto *communication_dev_ctx =
              platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

Y
Yu Yang 已提交
103
          op_handle = new ScaleLossGradOpHandle(local_scopes_.size(), s, p,
Y
Yu Yang 已提交
104
                                                communication_dev_ctx);
Y
Yu Yang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
          result.ops_.emplace_back(op_handle);

          // FIXME: Currently ScaleLossGradOp only use device_count as scale
          // factor. So it does not depend on any other operators.
          // VarHandle *loss = GetVarHandle(loss_var_name, place);
          // loss->pending_ops_.emplace_back(op_handle);
          // op_handle->inputs_.emplace_back(loss);

          CreateOpOutput(&result, op_handle, GradVarName(loss_var_name_), p, i);
          change_forward = true;
        }
      }
    }

    if (change_forward) {
      is_forwarding = false;
    }

    if (!is_forwarding) {
      auto var_names = op->OutputArgumentNames();
      for (auto &og : var_names) {
        if (grad_names_.count(og) != 0) {  // is param grad
Y
Yu Yang 已提交
127 128
                                           // Insert NCCL AllReduce Op
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
          result.ops_.emplace_back(
              new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
          auto *op_handle = result.ops_.back().get();

          for (size_t i = 0; i < places_.size(); ++i) {
            auto &p = places_[i];
            auto &vars = result.vars_[i][og];

            if (vars.empty()) {  // This device has no data. continue.
              continue;
            }
            auto *prev_grad = &vars[vars.size() - 1];
            op_handle->AddInput(prev_grad);

            auto &var = vars[vars.size()];
            var.place_ = p;
            var.name_ = og;
            var.version_ = vars.size() - 1;

            op_handle->AddOutput(&var);
          }
Y
Yu Yang 已提交
150 151 152
#else
          PADDLE_ENFORCE("Not implemented");
#endif
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161 162
        }
      }
    }
  }

  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
163

Y
Yu Yang 已提交
164 165 166 167 168 169
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
170
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
171
}  // namespace details
Y
Yu Yang 已提交
172 173 174
}  // namespace details
}  // namespace framework
}  // namespace paddle