op_translator.cc 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/translator/op_translator.h"

#include <algorithm>
#include <numeric>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>

#include "paddle/fluid/framework/op_desc.h"
25
#include "paddle/fluid/translator/op_compat_info.h"
26 27
#include "paddle/fluid/translator/program_translator.h"
#include "paddle/fluid/translator/type_translator.h"
28 29 30 31
#include "paddle/ir/core/builtin_op.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/ir_context.h"
#include "paddle/ir/core/value.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#include "paddle/phi/core/enforce.h"

namespace paddle {
namespace translator {

namespace {

using ResultIdx = size_t;
using OpDesc = paddle::framework::OpDesc;
using BlockDesc = paddle::framework::BlockDesc;
using VarDesc = paddle::framework::VarDesc;
using OpOutputTypeList = std::vector<ir::Type>;
using OpOutputMapping = std::unordered_map<std::string, ResultIdx>;

static const char kTargetDialectPrefix[] = "pd.";

inline bool IsInplace(const OpDesc& op_desc) {
  bool inplace = false;
  auto input_names = op_desc.InputArgumentNames();
  auto output_names = op_desc.OutputArgumentNames();

  std::vector<std::string> name_intersection;
  std::set_intersection(input_names.begin(),
                        input_names.end(),
                        output_names.begin(),
                        output_names.end(),
                        std::back_inserter(name_intersection));

  if (name_intersection.size() > 0) {
    std::string redundant_variables = std::accumulate(
        std::next(name_intersection.begin()),
        name_intersection.end(),
        name_intersection[0],
        [](std::string a, std::string b) { return a + "," + b; });
    VLOG(4) << "Following variables occur both in inputs and outputs: "
            << redundant_variables;
    return true;
  }

  return inplace;
}

74 75 76 77 78
inline std::string OpNamecompatibleMapping(std::string op_name) {
  auto& op_normalizer = OpNameNormalizer::instance();
  return op_normalizer[op_name];
}

79
inline ir::OpInfo LoopkUpOpInfo(ir::IrContext* ctx, const OpDesc& op_desc) {
80 81
  std::string target_op_name =
      kTargetDialectPrefix + OpNamecompatibleMapping(op_desc.Type());
82 83 84
  if (IsInplace(op_desc)) {
    target_op_name += "_";
  }
85 86
  VLOG(6) << "[op name normalizing: " << op_desc.Type() << " to "
          << target_op_name;
87 88 89 90 91 92 93 94 95 96 97
  auto op_info = ctx->GetRegisteredOpInfo(target_op_name);
  if (!op_info) {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Op %d should have corresponding OpInfo %d",
        op_desc.Type(),
        target_op_name));
  }

  return op_info;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
inline ir::Operation* InsertSliceOperationForTarget(
    ir::IrContext* ctx,
    TranslationContext* param_map,
    ir::Program* program,
    const VariableDefiningInfo& defining_info,
    const std::string& arg_name) {
  std::string slice_op_name(ir::SliceOp::name());
  ir::OpInfo op_info = ctx->GetRegisteredOpInfo(slice_op_name);
  std::unordered_map<std::string, ir::Attribute> op_attribute_map = {
      {"index", ir::Int32_tAttribute::get(ctx, defining_info.idx_in_vector)},
  };
  ir::VectorType src_vec_type =
      defining_info.value.type().dyn_cast<ir::VectorType>();
  ir::Operation* operation =
      ir::Operation::create({defining_info.value},
                            {src_vec_type[defining_info.idx_in_vector]},
                            op_attribute_map,
                            op_info);
  program->InsertOp(operation);
  ir::OpResult target_op_result = operation->GetResultByIndex(0);
  (*param_map)[arg_name] = VariableDefiningInfo(target_op_result);
  return operation;
}

inline ir::Operation* InsertCombineOperationForTarget(
    ir::IrContext* ctx,
    TranslationContext* param_map,
    ir::Program* program,
    const std::vector<std::string>& args) {
  std::string combine_op_name(ir::CombineOp::name());
  ir::OpInfo op_info = ctx->GetRegisteredOpInfo(combine_op_name);

  std::vector<ir::OpResult> src_values;
  std::vector<ir::Type> types_in_vec;
  for (auto arg_name : args) {
    auto defining_info = param_map->at(arg_name);
    src_values.push_back(defining_info.value);
    types_in_vec.push_back(defining_info.value.type());
  }
  ir::Type target_vec_type = ir::VectorType::get(ctx, types_in_vec);
  ir::Operation* operation =
      ir::Operation::create(src_values, {target_vec_type}, {}, op_info);
  program->InsertOp(operation);
  return operation;
}

144
inline std::vector<ir::OpResult> GenerateOperationInput(
145 146 147 148
    ir::IrContext* ctx,
    TranslationContext* param_map,
    ir::Program* program,
    const OpDesc& op_desc) {
149
  std::vector<ir::OpResult> op_inputs = {};
150 151 152

  // scan all inputs to see if any of them is generated as a vector<Tensor>
  // so need an additional `SliceOp` to take it out.
153 154 155
  for (const auto& n : op_desc.Inputs()) {
    auto& name = n.first;
    auto& args = n.second;
156

157 158 159 160 161
    for (const auto& arg_name : args) {
      PADDLE_ENFORCE_NE(
          param_map->count(arg_name),
          0,
          platform::errors::PreconditionNotMet(
162 163
              "arg %s.%s as input should be exists before prasing %d",
              name,
164 165
              arg_name,
              op_desc.Type()));
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
      auto defining_info = (*param_map)[arg_name];
      if (defining_info.generated_by_vector) {
        InsertSliceOperationForTarget(
            ctx, param_map, program, defining_info, arg_name);
      }
    }
  }

  for (const auto& n : op_desc.Inputs()) {
    auto& name = n.first;
    VLOG(10) << "[input retriving]"
             << "[" << op_desc.Type() << "]" << name;
    auto& args = n.second;

    // if src type is Tensor or a Vector<Tensor> with size <= 1
    if (args.size() <= 1) {
      for (const auto& arg_name : args) {
        auto defining_info = (*param_map)[arg_name];
        op_inputs.push_back(defining_info.value);
      }

      // if src type is Vector<Tesnor> , need an additional `CombineOp` to
      // assemble them.
    } else {
      auto* combine_op =
          InsertCombineOperationForTarget(ctx, param_map, program, args);
      op_inputs.push_back(combine_op->GetResultByIndex(0));
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    }
  }
  return op_inputs;
}

inline std::tuple<OpOutputTypeList, OpOutputMapping> GenerateOperationOutput(
    ir::IrContext* ctx, const OpDesc& op_desc) {
  OpOutputMapping arg_to_idx;
  OpOutputTypeList op_output_types = {};

  auto& type_translator = TypeTranslator::instance();

  const BlockDesc* block = op_desc.Block();
  for (const auto& n : op_desc.Outputs()) {
    auto& name = n.first;
    VLOG(10) << "[output translating]"
             << "[" << op_desc.Type() << "]" << name;
    auto& args = n.second;

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    size_t cur_output_idx = op_output_types.size();

    // if src type is Tensor or a Vector<Tensor> with size <= 1
    if (args.size() <= 1) {
      for (const auto& arg_name : args) {
        VarDesc* var = block->FindVarRecursive(arg_name);
        VLOG(10) << "[output translating]"
                 << "[" << op_desc.Type() << "]" << name << " " << arg_name
                 << " " << var->GetType();

        ir::Type translated_var_type =
            type_translator[var->GetType()](ctx, *var);

        arg_to_idx[arg_name] = cur_output_idx;
        op_output_types.push_back(translated_var_type);
      }

      // if src type is Vector<Tesnor>
    } else {
      std::vector<ir::Type> types;
      for (const auto& arg_name : args) {
        VarDesc* var = block->FindVarRecursive(arg_name);
        VLOG(10) << "[output translating]"
                 << "[" << op_desc.Type() << "]" << name << " " << arg_name
                 << " " << var->GetType();
        ir::Type translated_var_type =
            type_translator[var->GetType()](ctx, *var);
        types.push_back(translated_var_type);
        arg_to_idx[arg_name] = cur_output_idx;
      }
      ir::Type vec_type = ir::VectorType::get(ctx, types);
      op_output_types.push_back(vec_type);
244 245 246 247 248 249 250 251 252 253 254 255 256 257
    }
  }
  return {op_output_types, arg_to_idx};
}

inline void RecordOpResultMapping(TranslationContext* param_map,
                                  const OpDesc& op_desc,
                                  ir::Operation* operation,
                                  const OpOutputMapping& arg_to_idx) {
  for (const auto& n : op_desc.Outputs()) {
    auto& name = n.first;
    VLOG(10) << "[output recording]"
             << "[" << op_desc.Type() << "]" << name;
    auto& args = n.second;
258
    size_t idx_in_vector = 0;
259 260 261 262 263
    for (const auto& arg_name : args) {
      auto idx = arg_to_idx.at(arg_name);
      VLOG(10) << "[output recording]"
               << "[" << op_desc.Type() << "]" << arg_name << " " << idx;

264 265 266 267 268
      ir::OpResult value = operation->GetResultByIndex(idx);
      bool generated_by_vector = value.type().isa<ir::VectorType>();
      (*param_map)[arg_name] = VariableDefiningInfo(
          value, generated_by_vector, generated_by_vector ? idx_in_vector : -1);
      idx_in_vector++;
269 270 271 272 273 274 275 276
    }
  }
}

ir::Operation* GeneralOpHandler(ir::IrContext* ctx,
                                TranslationContext* param_map,
                                ir::Program* program,
                                const OpDesc& op_desc) {
277
  auto op_inputs = GenerateOperationInput(ctx, param_map, program, op_desc);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

  OpOutputMapping arg_to_idx;
  OpOutputTypeList op_output_types = {};
  std::tie(op_output_types, arg_to_idx) = GenerateOperationOutput(ctx, op_desc);
  auto op_info = LoopkUpOpInfo(ctx, op_desc);
  ir::Operation* operation =
      ir::Operation::create(op_inputs, op_output_types, {}, op_info);
  program->InsertOp(operation);
  RecordOpResultMapping(param_map, op_desc, operation, arg_to_idx);

  return operation;
}

ir::Operation* FeedOpHandler(ir::IrContext* ctx,
                             TranslationContext* param_map,
                             ir::Program* program,
                             const OpDesc& op_desc) {
  std::vector<ir::OpResult> op_inputs = {};

  OpOutputMapping arg_to_idx;
  OpOutputTypeList op_output_types = {};
  std::tie(op_output_types, arg_to_idx) = GenerateOperationOutput(ctx, op_desc);
  auto op_info = LoopkUpOpInfo(ctx, op_desc);
  ir::Operation* operation =
      ir::Operation::create(op_inputs, op_output_types, {}, op_info);
  program->InsertOp(operation);
  RecordOpResultMapping(param_map, op_desc, operation, arg_to_idx);

  return operation;
}

ir::Operation* FetchOpHandler(ir::IrContext* ctx,
                              TranslationContext* param_map,
                              ir::Program* program,
                              const OpDesc& op_desc) {
313
  auto op_inputs = GenerateOperationInput(ctx, param_map, program, op_desc);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

  OpOutputTypeList op_output_types = {};
  auto op_info = LoopkUpOpInfo(ctx, op_desc);
  ir::Operation* operation =
      ir::Operation::create(op_inputs, op_output_types, {}, op_info);
  program->InsertOp(operation);

  return operation;
}
}  // namespace

OpTranslator::OpTranslator() : general_handler(GeneralOpHandler) {
  special_handlers["feed"] = FeedOpHandler;
  special_handlers["fetch_v2"] = FetchOpHandler;
}

}  // namespace translator
}  // namespace paddle