adagrad_op.h 4.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
C
chengduo 已提交
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
24
struct SparseAdagradFunctor {
C
chengduo 已提交
25 26 27 28
  void operator()(const DeviceContext &context,
                  const framework::SelectedRows &grad,
                  const framework::Tensor &learning_rate, T epsilon,
                  framework::Tensor *moment, framework::Tensor *param);
Q
QI JUN 已提交
29 30
};

S
sneaxiy 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
template <typename DeviceContext, typename T>
framework::SelectedRows SquareSelectedRows(
    const DeviceContext &context, const framework::SelectedRows &input) {
  framework::SelectedRows out;
  out.set_rows(input.rows());
  out.set_height(input.height());
  out.mutable_value()->mutable_data<T>(input.value().dims(),
                                       context.GetPlace());
  auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
  auto e_in = framework::EigenVector<T>::Flatten(input.value());
  e_out.device(*context.eigen_device()) = e_in.square();
  return out;
}

Q
QI JUN 已提交
45
template <typename DeviceContext, typename T>
46 47
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
48 49 50 51 52 53 54 55 56
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

    auto *param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto *moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
57

K
Kexin Zhao 已提交
58 59
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
60

Q
QI JUN 已提交
61 62
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

C
chengduo 已提交
63
    auto *grad_var = ctx.InputVar("Grad");
Q
QI JUN 已提交
64 65 66 67 68 69 70
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto param = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Param"));
      auto grad = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Grad"));
      auto moment = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Moment"));
C
chengduo 已提交
71
      auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
QI JUN 已提交
72 73 74

      auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
      auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
C
chengduo 已提交
75
      auto *place = ctx.template device_context<DeviceContext>().eigen_device();
Q
QI JUN 已提交
76

Q
QI JUN 已提交
77
      moment_out.device(*place) = moment + grad * grad;
Q
QI JUN 已提交
78
      Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
P
peterzhang2029 已提交
79
      if (platform::is_cpu_place(ctx.GetPlace())) {
C
chengduo 已提交
80
        auto *lr = learning_rate->data<T>();
P
peterzhang2029 已提交
81 82 83 84 85 86 87 88
        param_out.device(*place) =
            param - lr[0] * grad / (moment_out.sqrt() + epsilon);
      } else {
        auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
        param_out.device(*place) =
            param -
            lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
      }
Q
QI JUN 已提交
89
    } else if (grad_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
90
      auto *param_tensor = ctx.Input<framework::Tensor>("Param");
Q
QI JUN 已提交
91 92
      PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);

C
chengduo 已提交
93
      auto *moment_tensor = ctx.Input<framework::Tensor>("Moment");
Q
QI JUN 已提交
94 95
      PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor);

Q
QI JUN 已提交
96 97 98
      SparseAdagradFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(),
              *ctx.Input<framework::SelectedRows>("Grad"),
Q
QI JUN 已提交
99 100 101 102 103
              *ctx.Input<framework::Tensor>("LearningRate"), epsilon,
              moment_out_tensor, param_out_tensor);
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
104 105 106 107 108
  }
};

}  // namespace operators
}  // namespace paddle