lrn_op.h 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
template <typename place, typename T>
struct LRNFunctor {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta);
};

Q
QI JUN 已提交
32
template <typename DeviceContext, typename T>
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41
class LRNKernel : public framework::OpKernel<T> {
 public:
  using Tensor = framework::Tensor;

  // f(x) = x * ( k + alpha * SUM((x)^2) )^(-beta)
  // x represents inputs
  // f(x) represents outputs
  void Compute(const framework::ExecutionContext& ctx) const override {
    // input
42 43
    const Tensor& x = *ctx.Input<Tensor>("X");
    auto x_dims = x.dims();
G
gongweibao 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    // NCHW
    int N = x_dims[0];
    int C = x_dims[1];
    int H = x_dims[2];
    int W = x_dims[3];

    Tensor* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    // MidOut save the intermediate result for backward
    Tensor* mid = ctx.Output<Tensor>("MidOut");
    mid->mutable_data<T>(ctx.GetPlace());

    int n = ctx.Attr<int>("n");
    T alpha = ctx.Attr<float>("alpha");
    T beta = ctx.Attr<float>("beta");
    T k = ctx.Attr<float>("k");

    PADDLE_ENFORCE(alpha >= 0.0, "alpha should >= 0.0");
    PADDLE_ENFORCE(beta >= 0.0, "beta should >= 0.0");
    PADDLE_ENFORCE(k >= 0.0, "k should >= 0.0");

Q
QI JUN 已提交
67
    LRNFunctor<DeviceContext, T> f;
68
    f(ctx, x, out, mid, N, C, H, W, n, k, alpha, beta);
G
gongweibao 已提交
69 70 71
  }
};

Q
QI JUN 已提交
72
template <typename DeviceContext, typename T>
73 74 75 76 77 78 79 80
struct LRNGradFunctor {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta);
};

G
gongweibao 已提交
81 82 83 84 85 86 87 88
/**
 * \brief Backward calculation for normalization with across maps.
 *
 * Function implementation:
 *
 * The implementation of this Function is derived from the
 * CrossMapNormalFunc implementation.
 *
89
 * InputGrad = OutputGrad * MidOut ^ (-beta)
G
gongweibao 已提交
90 91 92 93 94 95 96 97 98 99
 *    -- upper
 *  + > (OutputGrad * OutputValue * (-2 * alpha * beta) / MidOut) * InputValue
 *    -- lower
 *
 * The data of inputs/outputs format is the same as the forward interface
 * and is NCHW.
 *
 * The upper and lower is the same as forward. The logic of the sum
 * is also the same as forward.
 */
Q
QI JUN 已提交
100
template <typename DeviceContext, typename T>
G
gongweibao 已提交
101 102 103 104
class LRNGradKernel : public framework::OpKernel<T> {
 public:
  using Tensor = framework::Tensor;
  void Compute(const framework::ExecutionContext& ctx) const override {
105 106 107 108
    const Tensor& x = *ctx.Input<Tensor>("X");
    const Tensor& out = *ctx.Input<Tensor>("Out");
    const Tensor& out_g = *ctx.Input<Tensor>(framework::GradVarName("Out"));
    const Tensor& mid = *ctx.Input<Tensor>("MidOut");
G
gongweibao 已提交
109 110 111 112

    auto x_g = ctx.Output<Tensor>(framework::GradVarName("X"));
    x_g->mutable_data<T>(ctx.GetPlace());

113
    auto x_dims = x.dims();
G
gongweibao 已提交
114 115 116 117 118 119 120 121
    int N = x_dims[0];
    int C = x_dims[1];
    int H = x_dims[2];
    int W = x_dims[3];

    int n = ctx.Attr<int>("n");
    T alpha = ctx.Attr<T>("alpha");
    T beta = ctx.Attr<T>("beta");
122

123 124 125 126
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

Q
QI JUN 已提交
127
    LRNGradFunctor<DeviceContext, T> f;
128
    f(ctx, x, out, mid, x_g, out_g, N, C, H, W, n, alpha, beta);
G
gongweibao 已提交
129 130 131 132 133
  }
};

}  // namespace operators
}  // namespace paddle