activation_mkldnn_op.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::stream;
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
using platform::to_void_cast;
29 30

namespace {
K
Krzysztof Binias 已提交
31 32
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
33 34 35 36 37 38 39 40
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
41
}
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
}  // namespace

template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};
K
Krzysztof Binias 已提交
63

64 65 66 67 68 69 70 71 72 73
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input OutGrad tensor");

74 75 76 77
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

78 79 80 81 82 83 84 85 86 87 88 89 90 91
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto &attr : attrs) {
      *attr.second = ctx.Attr<float>(attr.first);
    }
    functor(ctx);
  }
};

template <typename T>
void eltwise_forward(const framework::ExecutionContext &ctx,
                     mkldnn::algorithm algorithm, const T alpha = 0,
                     const T beta = 0) {
92 93 94 95 96
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

97 98
  const auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Output<Tensor>("Out");
99

100 101
  const T *x_data = x->data<T>();
  T *y_data = y->mutable_data<T>(ctx.GetPlace());
102

103
  PADDLE_ENFORCE(x->dims().size() == 2 || x->dims().size() == 4,
104
                 "Input dim must be with 2 or 4");
105 106 107 108 109

  std::vector<int> src_tz = framework::vectorize2int(x->dims());

  auto src_format =
      src_tz.size() == 2 ? mkldnn::memory::format::nc : x->format();
110

K
Krzysztof Binias 已提交
111
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
112 113
  const std::string key_src_data =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
114 115 116 117 118 119 120 121
  const std::string key_src_layout =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_layout";
  const std::string key_with_layout = key + std::to_string(src_format);
  const std::string key_src_mem = key_with_layout + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key_with_layout + "@eltwise_fwd_dst_mem";
  const std::string key_fwd = key_with_layout + "@eltwise_fwd";
  const std::string key_fwd_pd = key_with_layout + "@eltwise_fwd_pd";

122 123
  bool is_test = ctx.Attr<bool>("is_test");

124 125 126
  // save input data and layout to be referred in backward path
  auto p_src_data = std::make_shared<const T *>(x_data);
  auto p_src_layout = std::make_shared<memory::format>(src_format);
127 128 129 130
  if (!is_test) {
    dev_ctx.SetBlob(key_src_data, p_src_data);
    dev_ctx.SetBlob(key_src_layout, p_src_layout);
  }
K
Krzysztof Binias 已提交
131

K
Krzysztof Binias 已提交
132 133
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
134

135
  std::shared_ptr<memory> dst_memory;
K
Krzysztof Binias 已提交
136

K
Krzysztof Binias 已提交
137
  if (p_fwd == nullptr) {
138 139 140 141 142 143 144 145 146
    // create mkldnn memory for input X
    auto src_md = platform::MKLDNNMemDesc(
        src_tz, platform::MKLDNNGetDataType<T>(), src_format);
    auto src_memory = std::shared_ptr<memory>(
        new memory({src_md, mkldnn_engine}, to_void_cast(x_data)));
    // save src_memory to be referred in backward path
    dev_ctx.SetBlob(key_src_mem, src_memory);

    // create primitive descriptor for activation forward and save it
147 148 149
    auto mkldnn_forward_prop_kind = is_test
                                        ? mkldnn::prop_kind::forward_inference
                                        : mkldnn::prop_kind::forward_training;
150
    auto forward_desc = mkldnn::eltwise_forward::desc(
151
        mkldnn_forward_prop_kind, algorithm,
152 153 154 155 156
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto forward_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        forward_desc, mkldnn_engine);

    // save prim desc into global device context to be referred in backward path
157
    if (!is_test) dev_ctx.SetBlob(key_fwd_pd, forward_pd);
158 159 160 161 162 163 164 165 166 167

    // create mkldnn memory for output y
    dst_memory =
        std::make_shared<memory>(forward_pd->dst_primitive_desc(), y_data);

    dev_ctx.SetBlob(key_dst_mem, dst_memory);

    // create activation primitive
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(*forward_pd, *src_memory,
                                                      *dst_memory);
K
Krzysztof Binias 已提交
168 169
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
170
    // primitives already exist
171
    auto src_memory =
K
Krzysztof Binias 已提交
172
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
173 174 175
    PADDLE_ENFORCE(src_memory != nullptr,
                   "Fail to find eltwise src_memory in device context.");
    dst_memory =
K
Krzysztof Binias 已提交
176
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
177 178
    PADDLE_ENFORCE(dst_memory != nullptr,
                   "Fail to find eltwise dst_memory in device context.");
K
Krzysztof Binias 已提交
179

180 181
    src_memory->set_data_handle(platform::to_void_cast(x_data));
    dst_memory->set_data_handle(y_data);
K
Krzysztof Binias 已提交
182
  }
183 184

  // push primitive to stream and wait until it's executed
185 186 187 188 189 190
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_fwd);
  stream(stream::kind::eager).submit(pipeline).wait();

  y->set_layout(DataLayout::kMKLDNN);
  y->set_format(GetMKLDNNFormat(*dst_memory));
191 192
}

193 194 195 196
template <typename T>
void eltwise_grad(const framework::ExecutionContext &ctx,
                  mkldnn::algorithm algorithm, const T alpha = 0,
                  const T beta = 0) {
197 198 199
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

200 201
  const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
202

203 204
  const T *diff_y_data = diff_y->data<T>();
  T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
205

206
  std::vector<int> diff_dst_tz = framework::vectorize2int(diff_y->dims());
K
Krzysztof Binias 已提交
207

208 209
  auto diff_y_format =
      diff_dst_tz.size() == 2 ? mkldnn::memory::format::nc : diff_y->format();
K
Krzysztof Binias 已提交
210

211
  const std::string key = gethash(diff_dst_tz, algorithm);
K
Krzysztof Binias 已提交
212 213
  const std::string key_src_data =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  const std::string key_src_layout =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_layout";
  const auto p_src_layout =
      std::static_pointer_cast<memory::format>(dev_ctx.GetBlob(key_src_layout));
  const std::string key_src_mem =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_src_mem";
  const std::string key_fwd_pd =
      key + std::to_string(*p_src_layout) + "@eltwise_fwd_pd";
  const std::string key_with_layouts =
      key + std::to_string(*p_src_layout) + "-" + std::to_string(diff_y_format);
  const std::string key_diff_src_mem =
      key_with_layouts + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem =
      key_with_layouts + "@eltwise_diff_dst_mem";
  const std::string key_grad = key_with_layouts + "@eltwise_grad";

K
Krzysztof Binias 已提交
230 231 232
  const auto p_src_data =
      std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));

233
  auto src_memory =
K
Krzysztof Binias 已提交
234
      std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
235 236 237 238 239
  PADDLE_ENFORCE(src_memory != nullptr,
                 "Fail to find src_memory in device context");
  src_memory->set_data_handle(*p_src_data.get());

  std::shared_ptr<memory> diff_src_memory;
K
Krzysztof Binias 已提交
240

241
  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_backward>(
K
Krzysztof Binias 已提交
242 243 244
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    // create mkldnn memory for input diff_y
    auto diff_dst_md = platform::MKLDNNMemDesc(
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), diff_y_format);
    auto diff_dst_memory = std::shared_ptr<memory>(
        new memory({diff_dst_md, mkldnn_engine}, to_void_cast(diff_y_data)));
    dev_ctx.SetBlob(key_diff_dst_mem, diff_dst_memory);

    // retrieve eltwise primitive desc from device context
    auto forward_pd =
        std::static_pointer_cast<mkldnn::eltwise_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fwd_pd));
    PADDLE_ENFORCE(forward_pd != nullptr,
                   "Fail to find eltwise_fwd_pd in device context");

    // ceate primitive descriptor for activation backward
    auto backward_desc = mkldnn::eltwise_backward::desc(
        algorithm, diff_dst_memory->get_primitive_desc().desc(),
        src_memory->get_primitive_desc().desc(), alpha, beta);
    auto backward_pd = mkldnn::eltwise_backward::primitive_desc(
        backward_desc, mkldnn_engine, *forward_pd);

    // create mkldnn memory for output diff_src
    diff_src_memory = std::make_shared<memory>(
        backward_pd.diff_src_primitive_desc(), diff_x_data);
    dev_ctx.SetBlob(key_diff_src_mem, diff_src_memory);

    // create activation backward primitive
K
Krzysztof Binias 已提交
272
    p_grad = std::make_shared<mkldnn::eltwise_backward>(
273 274
        backward_pd, *src_memory, *diff_dst_memory, *diff_src_memory);
    dev_ctx.SetBlob(key_grad, p_grad);
K
Krzysztof Binias 已提交
275 276
  } else {
    // primitives already exist
277
    diff_src_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
278
        dev_ctx.GetBlob(key_diff_src_mem));
279
    auto diff_dst_memory = std::static_pointer_cast<mkldnn::memory>(
K
Krzysztof Binias 已提交
280 281
        dev_ctx.GetBlob(key_diff_dst_mem));

282 283 284 285
    diff_src_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_x_data));
    diff_dst_memory->set_data_handle(
        platform::to_void_reinterpret_cast(diff_y_data));
K
Krzysztof Binias 已提交
286
  }
287 288

  // push primitive to stream and wait until it's executed
289 290 291 292 293 294
  std::vector<primitive> pipeline;
  pipeline.push_back(*p_grad);
  stream(stream::kind::eager).submit(pipeline).wait();

  diff_x->set_layout(DataLayout::kMKLDNN);
  diff_x->set_format(GetMKLDNNFormat(*diff_src_memory));
295 296 297 298
}

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
299
  void operator()(const framework::ExecutionContext &ctx) const {
300 301 302 303 304 305
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
306
  void operator()(const framework::ExecutionContext &ctx) const {
307 308 309 310 311
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
T
tensor-tang 已提交
312
using ReluMKLDNNFunctor =
313 314 315
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
316
using TanhMKLDNNFunctor =
317 318 319
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
320
using SqrtMKLDNNFunctor =
321 322 323
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
324
using AbsMKLDNNFunctor =
325 326 327
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
T
tensor-tang 已提交
328
using ReluMKLDNNGradFunctor =
329 330 331
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
T
tensor-tang 已提交
332
using TanhMKLDNNGradFunctor =
333 334 335
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
T
tensor-tang 已提交
336
using SqrtMKLDNNGradFunctor =
337 338 339
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
T
tensor-tang 已提交
340
using AbsMKLDNNGradFunctor =
341 342 343 344 345 346 347 348 349 350 351 352 353
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
354
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
T
tensor-tang 已提交
355 356 357 358
  __macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
  __macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
  __macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
  __macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
359 360

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);