util.py 1.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

import numpy as np
from py_paddle import swig_paddle


def doubleEqual(a, b):
    return abs(a - b) < 1e-5


def __readFromFile():
    for i in xrange(10002):
X
xuwei06 已提交
27 28 29
        label = np.random.randint(0, 9)
        sample = np.random.rand(784) + 0.1 * label
        yield sample, label
Z
zhangjinchao01 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


def loadMNISTTrainData(batch_size=100):
    if not hasattr(loadMNISTTrainData, "gen"):
        generator = __readFromFile()
        loadMNISTTrainData.gen = generator
    else:
        generator = loadMNISTTrainData.gen
    args = swig_paddle.Arguments.createArguments(2)
    # batch_size = 100

    dense_slot = []
    id_slot = []
    atEnd = False

    for _ in xrange(batch_size):
        try:
            result = generator.next()
            dense_slot.extend(result[0])
            id_slot.append(result[1])
        except StopIteration:
            atEnd = True
            del loadMNISTTrainData.gen
            break

    dense_slot = swig_paddle.Matrix.createDense(dense_slot, batch_size, 784)
    id_slot = swig_paddle.IVector.create(id_slot)
    args.setSlotValue(0, dense_slot)
    args.setSlotIds(1, id_slot)
    return args, atEnd