process_group_mpi.py 15.7 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import random
import numpy as np
import os
import shutil

import paddle
from paddle.fluid import core
from datetime import timedelta
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.distributed.collective import Group
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _set_group_map_backend
from paddle.fluid.framework import _set_expected_place
import paddle.distributed as dist
import ctypes

ctypes.CDLL("libmpi.so", mode=ctypes.RTLD_GLOBAL)


def init_process_group(strategy=None):
    gid = 0
    pg = core.ProcessGroupMPI.create([], gid)
    rank = pg.get_rank()
    world_size = pg.get_world_size()

    # support CPU
    place = core.CPUPlace()
    _set_expected_place(place)

    group = Group(rank,
                  world_size,
                  id=0,
                  ranks=list(range(world_size)),
                  pg=pg,
                  name=_default_group_name)
    _set_group_map_by_name(_default_group_name, group)
    _set_group_map(gid, group)
    _set_group_map_backend(group, "mpi")

    return group


def test_allreduce_sum(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    sum_result = tensor_x + tensor_y
    if pg.rank() == 0:
        task = dist.all_reduce(tensor_x)
        assert np.array_equal(tensor_x, sum_result)
    else:
        task = dist.all_reduce(tensor_y)
        assert np.array_equal(tensor_y, sum_result)
    print("test allreduce sum api ok")


def test_allreduce_max(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    max_result = paddle.maximum(tensor_x, tensor_y)

    if pg.rank() == 0:
        task = dist.all_reduce(tensor_x,
                               dist.ReduceOp.MAX,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, max_result)
    else:
        task = dist.all_reduce(tensor_y,
                               dist.ReduceOp.MAX,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_y, max_result)
    print("test allreduce max api ok")


def test_allreduce_min(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    min_result = paddle.minimum(tensor_x, tensor_y)

    if pg.rank() == 0:
        task = dist.all_reduce(tensor_x,
                               dist.ReduceOp.MIN,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, min_result)
    else:
        task = dist.all_reduce(tensor_y,
                               dist.ReduceOp.MIN,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_y, min_result)
    print("test allreduce min api ok")


def test_allreduce_prod(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    prod_result = np.multiply(x, y)

    if pg.rank() == 0:
        task = dist.all_reduce(tensor_x,
                               dist.ReduceOp.PROD,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, prod_result)
    else:
        task = dist.all_reduce(tensor_y,
                               dist.ReduceOp.PROD,
                               use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_y, prod_result)
    print("test allreduce prod api ok")


def test_broadcast(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    broadcast_result = paddle.assign(tensor_x)
    if pg.rank() == 0:
        task = dist.broadcast(tensor_x, 0, use_calc_stream=False)
        task.synchronize()
        assert task.is_completed()
        assert np.array_equal(broadcast_result, tensor_x)
    else:
        task = dist.broadcast(tensor_y, 0)
        assert np.array_equal(broadcast_result, tensor_y)
    print("test broadcast api ok")


def test_barrair(pg):
    # rank 0
    if pg.rank() == 0:
        dist.barrier()
    # rank 1
    else:
        task = pg.barrier()
        task.wait()
    print("test barrier api ok\n")


def test_allgather(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    y = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    tensor_y = paddle.to_tensor(y)
    out_shape = list(shape)
    out_shape[0] *= 2
    out = np.random.random(out_shape).astype(dtype)
    tensor_out = paddle.to_tensor(out)
    if pg.rank() == 0:
        task = pg.all_gather(tensor_x, tensor_out)
        task.wait()
    # rank 1
    else:
        tensor_out_list = [
            paddle.empty_like(tensor_x),
            paddle.empty_like(tensor_x)
        ]
        task = dist.all_gather(tensor_out_list, tensor_y, use_calc_stream=False)
        tensor_out = paddle.concat(tensor_out_list)
    out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
    out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2], [out_shape[0]])
    assert np.array_equal(tensor_x, out_1)
    assert np.array_equal(tensor_y, out_2)
    print("test allgather api ok\n")

    if pg.rank() == 0:
        task = pg.all_gather(tensor_x, tensor_out)
        task.wait()
    # rank 1
    else:
        tensor_out_list = []
        task = dist.all_gather(tensor_out_list, tensor_y, use_calc_stream=False)
        tensor_out = paddle.concat(tensor_out_list)
    out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
    out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2], [out_shape[0]])
    assert np.array_equal(tensor_x, out_1)
    assert np.array_equal(tensor_y, out_2)
    print("test allgather api2 ok\n")


def test_all2all(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    y = np.random.random(shape).astype(dtype)
    out1 = np.random.random(shape).astype(dtype)
    out2 = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    tensor_y = paddle.to_tensor(y)
    tensor_out1 = paddle.to_tensor(out1)
    tensor_out2 = paddle.to_tensor(out2)
    raw_tensor_x_2 = paddle.slice(tensor_x, [0], [shape[0] // 2], [shape[0]])
    raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0], [shape[0] // 2])
    if pg.rank() == 0:
        task = pg.alltoall(tensor_x, tensor_out1)
        task.wait()
    # rank 1
    else:
        in_1, in_2 = paddle.split(tensor_y, 2)
        out_1, out_2 = paddle.split(tensor_out2, 2)
        out_tensor_list = [out_1, out_2]
        task = dist.alltoall([in_1, in_2], out_tensor_list)
        tensor_out2 = paddle.concat(out_tensor_list)
    out1_2 = paddle.slice(tensor_out1, [0], [shape[0] // 2], [shape[0]])
    out2_1 = paddle.slice(tensor_out2, [0], [0], [shape[0] // 2])
    if pg.rank() == 0:
        assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
    else:
        assert np.array_equal(out2_1, raw_tensor_x_2)
    print("test alltoall api ok\n")

    x = np.random.random(shape).astype(dtype)
    y = np.random.random(shape).astype(dtype)
    out1 = np.random.random(shape).astype(dtype)
    out2 = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    tensor_y = paddle.to_tensor(y)
    tensor_out1 = paddle.to_tensor(out1)
    tensor_out2 = paddle.to_tensor(out2)
    raw_tensor_x_2 = paddle.slice(tensor_x, [0], [shape[0] // 2], [shape[0]])
    raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0], [shape[0] // 2])
    if pg.rank() == 0:
        task = pg.alltoall(tensor_x, tensor_out1)
        task.wait()
    # rank 1
    else:
        in_1, in_2 = paddle.split(tensor_y, 2)
        out_1, out_2 = paddle.split(tensor_out2, 2)
        out_tensor_list = []
        task = dist.alltoall([in_1, in_2], out_tensor_list)
        tensor_out2 = paddle.concat(out_tensor_list)
    out1_2 = paddle.slice(tensor_out1, [0], [shape[0] // 2], [shape[0]])
    out2_1 = paddle.slice(tensor_out2, [0], [0], [shape[0] // 2])
    if pg.rank() == 0:
        assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
    else:
        assert np.array_equal(out2_1, raw_tensor_x_2)
    print("test alltoall api2 ok\n")


def test_reduce_sum(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    y = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    tensor_y = paddle.to_tensor(y)
    sum_result = tensor_x + tensor_y
    if pg.rank() == 0:
        task = dist.reduce(tensor_x, 0, use_calc_stream=True)
    # rank 1
    else:
        task = dist.reduce(tensor_y, 0, use_calc_stream=False)
        task.wait()
    if pg.rank() == 0:
        assert np.array_equal(tensor_x, sum_result)
    print("test reduce sum api ok\n")


def test_reduce_max(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    max_result = paddle.maximum(tensor_x, tensor_y)

    if pg.rank() == 0:
        task = dist.reduce(tensor_x,
                           0,
                           dist.ReduceOp.MAX,
                           use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, max_result)
    else:
        task = dist.reduce(tensor_y,
                           0,
                           dist.ReduceOp.MAX,
                           use_calc_stream=False)
        task.wait()
    print("test reduce max api ok")


def test_reduce_min(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    min_result = paddle.minimum(tensor_x, tensor_y)

    if pg.rank() == 0:
        task = dist.reduce(tensor_x,
                           0,
                           dist.ReduceOp.MIN,
                           use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, min_result)
    else:
        task = dist.reduce(tensor_y,
                           0,
                           dist.ReduceOp.MIN,
                           use_calc_stream=False)
        task.wait()
    print("test reduce min api ok")


def test_reduce_prod(pg, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    prod_result = np.multiply(x, y)

    if pg.rank() == 0:
        task = dist.reduce(tensor_x,
                           0,
                           dist.ReduceOp.PROD,
                           use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_x, prod_result)
    else:
        task = dist.reduce(tensor_y,
                           0,
                           dist.ReduceOp.PROD,
                           use_calc_stream=False)
        task.wait()
    print("test reduce prod api ok")


def test_scatter(pg, shape, dtype):
    # rank 0
    in_shape = list(shape)
    in_shape[0] *= 2
    x = np.random.random(in_shape).astype(dtype)
    y = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    tensor_y = paddle.to_tensor(y)
    if pg.rank() == 0:
        in_1, in_2 = paddle.split(tensor_x, 2)
        task = dist.scatter(tensor_y, [in_1, in_2], 0, use_calc_stream=True)
    # rank 1
    else:
        task = dist.scatter(tensor_y, [], 0, use_calc_stream=False)
        task.wait()
    out1 = paddle.slice(tensor_x, [0], [0], [shape[0]])
    out2 = paddle.slice(tensor_x, [0], [shape[0]], [shape[0] * 2])
    if pg.rank() == 0:
        assert np.array_equal(tensor_y, out1)
    else:
        assert np.array_equal(tensor_y, out2)
    print("test scatter api ok\n")


def test_send_recv(pg, sub_group, shape, dtype):
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    if pg.rank() == 0:
        task = dist.send(tensor_x, 1, group=sub_group, use_calc_stream=False)
        task.wait()
    elif pg.rank() == 1:
        task = dist.recv(tensor_y, 0, group=sub_group, use_calc_stream=False)
        task.wait()
        assert np.array_equal(tensor_y, tensor_x)

    print("test send api ok")

    # test send min
    # rank 0
    x = np.random.random(shape).astype(dtype)
    tensor_x = paddle.to_tensor(x)
    # rank 1
    y = np.random.random(shape).astype(dtype)
    tensor_y = paddle.to_tensor(y)

    if pg.rank() == 0:
        task = dist.send(tensor_x, 1, group=sub_group, use_calc_stream=True)
    elif pg.rank() == 1:
        task = dist.recv(tensor_y, 0, group=sub_group, use_calc_stream=True)
        assert np.array_equal(tensor_y, tensor_x)

    print("test send api ok")


class TestProcessGroup(unittest.TestCase):

    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_mpi(self):
        with _test_eager_guard():
            group = init_process_group()
            pg = group.process_group

            # test allreduce sum
            test_allreduce_sum(pg, self.shape, self.dtype)

            # test allreduce max
            test_allreduce_max(pg, self.shape, self.dtype)

            # test allreduce min
            test_allreduce_min(pg, self.shape, self.dtype)

            # test allreduce prod
            test_allreduce_prod(pg, self.shape, self.dtype)

            # test broadcast
            test_broadcast(pg, self.shape, self.dtype)

            # test barrier
            test_barrair(pg)

            # test allgather
            test_allgather(pg, self.shape, self.dtype)

            # test alltoall
            test_all2all(pg, self.shape, self.dtype)

            # test Reduce
            test_reduce_sum(pg, self.shape, self.dtype)

            # test reduce max
            test_reduce_max(pg, self.shape, self.dtype)

            # test reduce min
            test_reduce_min(pg, self.shape, self.dtype)

            # test reduce product
            test_reduce_prod(pg, self.shape, self.dtype)

            # test Scatter
            test_scatter(pg, self.shape, self.dtype)

            # test send recv.
            test_send_recv(pg, group, self.shape, self.dtype)


if __name__ == "__main__":
    unittest.main()