qr_op.cu 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_WITH_HIP
// HIP not support cusolver

#include <thrust/device_vector.h>
#include <algorithm>
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/qr_op.h"
#include "paddle/fluid/platform/dynload/cusolver.h"

// Reuse some helper functions from svd
#include "paddle/fluid/operators/svd_helper.h"

namespace paddle {
namespace operators {

template <typename T>
class QrGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool compute_q;
    bool reduced_mode;
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
    const Tensor& x = *context.Input<Tensor>("X");
    Tensor& q = *context.Output<Tensor>("Q");
    Tensor& r = *context.Output<Tensor>("R");
    const std::string mode = context.Attr<std::string>("mode");
    std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode);

    auto numel = x.numel();
    PADDLE_ENFORCE_GT(numel, 0, platform::errors::PreconditionNotMet(
                                    "The input of QR is empty."));
    auto x_dims = x.dims();
    int x_rank = x_dims.size();
    int m = x_dims[x_rank - 2];
    int n = x_dims[x_rank - 1];
    int min_mn = std::min(m, n);
    int k = reduced_mode ? min_mn : m;
    int batch_size = numel / (m * n);
    int qr_stride = m * n;
    int tau_stride = min_mn;

    if (compute_q) {
      q.mutable_data<math::Real<T>>(
          context.GetPlace(),
          size_t(batch_size * m * k * sizeof(math::Real<T>)));
    }
    r.mutable_data<math::Real<T>>(
        context.GetPlace(), size_t(batch_size * k * n * sizeof(math::Real<T>)));

    auto dito =
        math::DeviceIndependenceTensorOperations<platform::CUDADeviceContext,
                                                 T>(context);

    // Note: allocate temporary tensors because of lacking in-place operatios.
    // Prepare qr
    Tensor qr;
    qr.mutable_data<math::Real<T>>(
        context.GetPlace(), size_t(batch_size * m * n * sizeof(math::Real<T>)));
    // BatchedGeqrf performs computation in-place and 'qr' must be a copy of
    // input
    TensorCopy(x, context.GetPlace(), &qr);

    // Prepare tau
    auto tau_dims_vec = framework::vectorize<int>(x_dims);
    tau_dims_vec.pop_back();
    tau_dims_vec[tau_dims_vec.size() - 1] = min_mn;
    Tensor tau = dito.Fill(tau_dims_vec, 0);

    // Transpose 'qr' to conform the column-major order
    auto tmp_qr = dito.Transpose(qr);
    framework::TensorCopy(tmp_qr, qr.place(), &qr);
    auto qr_data = qr.mutable_data<T>(context.GetPlace());
    auto tau_data = tau.mutable_data<T>(context.GetPlace());

    BatchedGeqrf(dev_ctx, batch_size, m, n, qr_data, m, tau_data, qr_stride,
                 tau_stride);

    if (reduced_mode) {
      auto trans_qr = dito.Transpose(qr);
      auto sliced_qr = dito.Slice(trans_qr, {-2}, {0}, {min_mn});
      auto tmp_r = dito.TrilTriu(sliced_qr, 0, false);
      // Transpose 'tmp_r' to retore the original row-major order
      framework::TensorCopy(tmp_r, r.place(), &r);
    } else {
      auto trans_qr = dito.Transpose(qr);
      auto tmp_r = dito.TrilTriu(trans_qr, 0, false);
      // Transpose 'tmp_r' to retore the original row-major order
      framework::TensorCopy(tmp_r, r.place(), &r);
    }

    if (compute_q) {
      // Perform QRGQR for Q using the result from GEQRF
      // Transpose 'q' to retore the original row-major order
      if (reduced_mode) {
        BatchedOrgqr(dev_ctx, batch_size, m, min_mn, min_mn, qr_data, m,
                     tau_data, qr_stride, tau_stride);
        auto trans_q = dito.Transpose(qr);
        auto sliced_q = dito.Slice(trans_q, {-1}, {0}, {min_mn});
        framework::TensorCopy(sliced_q, q.place(), &q);
      } else {
        if (m > n) {
          auto new_qr_dims_vec = framework::vectorize<int>(x_dims);
          new_qr_dims_vec[new_qr_dims_vec.size() - 1] = m;
          Tensor new_qr = dito.Fill(new_qr_dims_vec, 0);
          auto new_qr_data = new_qr.mutable_data<T>(context.GetPlace());
          auto new_qr_stride = m * m;
          for (int i = 0; i < batch_size; ++i) {
            memory::Copy(
                BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                (new_qr_data + i * new_qr_stride),
                BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                (qr_data + i * qr_stride), qr_stride * sizeof(math::Real<T>),
                dev_ctx.stream());
          }
          BatchedOrgqr(dev_ctx, batch_size, m, m, min_mn, new_qr_data, m,
                       tau_data, new_qr_stride, tau_stride);
          auto trans_q = dito.Transpose(new_qr);
          framework::TensorCopy(trans_q, q.place(), &q);
        } else {
          BatchedOrgqr(dev_ctx, batch_size, m, m, min_mn, qr_data, m, tau_data,
                       qr_stride, tau_stride);
          auto trans_q = dito.Transpose(qr);
          auto sliced_q = dito.Slice(trans_q, {-1}, {0}, {m});
          framework::TensorCopy(sliced_q, q.place(), &q);
        }
      }
    }
  }

  void BatchedGeqrf(const platform::CUDADeviceContext& dev_ctx, int batch_size,
                    int m, int n, float* a, int lda, float* tau, int a_stride,
                    int tau_stride) const;

  void BatchedGeqrf(const platform::CUDADeviceContext& dev_ctx, int batch_size,
                    int m, int n, double* a, int lda, double* tau, int a_stride,
                    int tau_stride) const;

  void BatchedOrgqr(const platform::CUDADeviceContext& dev_ctx, int batch_size,
                    int m, int n, int k, float* a, int lda, float* tau,
                    int a_stride, int tau_stride) const;

  void BatchedOrgqr(const platform::CUDADeviceContext& dev_ctx, int batch_size,
                    int m, int n, int k, double* a, int lda, double* tau,
                    int a_stride, int tau_stride) const;
};

template <>
void QrGPUKernel<float>::BatchedGeqrf(
    const platform::CUDADeviceContext& dev_ctx, int batch_size, int m, int n,
    float* a, int lda, float* tau, int a_stride, int tau_stride) const {
  int lwork = 0;

  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSgeqrf_bufferSize(
      handle, m, n, a, lda, &lwork));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  auto info = memory::Alloc(dev_ctx, sizeof(int));
  int* info_d = reinterpret_cast<int*>(info->ptr());

  for (int i = 0; i < batch_size; ++i) {
    float* a_working_ptr = &a[i * a_stride];
    float* tau_working_ptr = &tau[i * tau_stride];
    // compute geqrf
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSgeqrf(
        handle, m, n, a_working_ptr, lda, tau_working_ptr, workspace_ptr, lwork,
        info_d));
    // Do we need synchronized here?
    // check the error info
    int info_h;
    memory::Copy(platform::CPUPlace(), &info_h,
                 BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                 info_d, sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        info_h, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver geqrf is not zero. [%d]", i, info_h));
  }
}

template <>
void QrGPUKernel<double>::BatchedGeqrf(
    const platform::CUDADeviceContext& dev_ctx, int batch_size, int m, int n,
    double* a, int lda, double* tau, int a_stride, int tau_stride) const {
  int lwork = 0;

  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDgeqrf_bufferSize(
      handle, m, n, a, lda, &lwork));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
  auto info = memory::Alloc(dev_ctx, sizeof(int));
  int* info_d = reinterpret_cast<int*>(info->ptr());

  for (int i = 0; i < batch_size; ++i) {
    double* a_working_ptr = &a[i * a_stride];
    double* tau_working_ptr = &tau[i * tau_stride];
    // compute geqrf
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDgeqrf(
        handle, m, n, a_working_ptr, lda, tau_working_ptr, workspace_ptr, lwork,
        info_d));
    // Do we need synchronized here?
    // check the error info
    int info_h;
    memory::Copy(platform::CPUPlace(), &info_h,
                 BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                 info_d, sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        info_h, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver geqrf is not zero. [%d]", i, info_h));
  }
}

template <>
void QrGPUKernel<float>::BatchedOrgqr(
    const platform::CUDADeviceContext& dev_ctx, int batch_size, int m, int n,
    int k, float* a, int lda, float* tau, int a_stride, int tau_stride) const {
  int lwork = 0;

  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSorgqr_bufferSize(
      handle, m, n, k, a, lda, tau, &lwork));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  auto info = memory::Alloc(dev_ctx, sizeof(int));
  int* info_d = reinterpret_cast<int*>(info->ptr());

  for (int i = 0; i < batch_size; ++i) {
    float* a_working_ptr = &a[i * a_stride];
    float* tau_working_ptr = &tau[i * tau_stride];
    // compute orggr
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnSorgqr(
        handle, m, n, k, a_working_ptr, lda, tau_working_ptr, workspace_ptr,
        lwork, info_d));
    // Do we need synchronized here?
    // check the error info
    int info_h;
    memory::Copy(platform::CPUPlace(), &info_h,
                 BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                 info_d, sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        info_h, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver QR is not zero. [%d]", i, info_h));
  }
}

template <>
void QrGPUKernel<double>::BatchedOrgqr(
    const platform::CUDADeviceContext& dev_ctx, int batch_size, int m, int n,
    int k, double* a, int lda, double* tau, int a_stride,
    int tau_stride) const {
  int lwork = 0;

  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDorgqr_bufferSize(
      handle, m, n, k, a, lda, tau, &lwork));
  auto workspace = memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
  auto info = memory::Alloc(dev_ctx, sizeof(int));
  int* info_d = reinterpret_cast<int*>(info->ptr());

  for (int i = 0; i < batch_size; ++i) {
    double* a_working_ptr = &a[i * a_stride];
    double* tau_working_ptr = &tau[i * tau_stride];
    // compute orggr
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cusolverDnDorgqr(
        handle, m, n, k, a_working_ptr, lda, tau_working_ptr, workspace_ptr,
        lwork, info_d));
    // Do we need synchronized here?
    // check the error info
    int info_h;
    memory::Copy(platform::CPUPlace(), &info_h,
                 BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
                 info_d, sizeof(int), dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        info_h, 0,
        platform::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver QR is not zero. [%d]", i, info_h));
  }
}

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(qr, ops::QrGPUKernel<float>, ops::QrGPUKernel<double>);
REGISTER_OP_CUDA_KERNEL(
    qr_grad, ops::QrGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::QrGradKernel<paddle::platform::CUDADeviceContext, double>);

#endif  // not PADDLE_WITH_HIP