bilateral_slice_op.cu 15.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <algorithm>
#include <string>
#include "paddle/fluid/operators/bilateral_slice_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

using framework::Tensor;
using DataLayout = framework::DataLayout;

template <typename T>
__device__ T DiffAbs(T x) {
  T eps = 1e-8;
  return sqrt(x * x + eps);
}

template <typename T>
__device__ T DdiffAbs(T x) {
  T eps = 1e-8;
  return x / sqrt(x * x + eps);
}

template <typename T>
__device__ T WeightZ(T x) {
  T abx = DiffAbs(x);
  return max(1.0f - abx, 0.0f);
}

template <typename T>
__device__ T DweightZ(T x) {
  T abx = DiffAbs(x);
  if (abx > 1.0f) {
    return 0.0f;
  } else {
    return DdiffAbs(x);
  }
}

template <typename T>
__global__ void BilateralSliceCudaForwardKernel(
    T* output, const T* bilateral_grid, const T* guide, const T* input,
    GridSizes gsz, bool has_offset, int total_count, int output_chans) {
  int h = gsz.h;
  int w = gsz.w;
  int gd = gsz.gd;
  int gh = gsz.gh;
  int gw = gsz.gw;
  int input_chans = gsz.input_chans;
  int coeff_stride = input_chans;
  int grid_chans = input_chans * output_chans;

  if (has_offset) {
    grid_chans += output_chans;
    coeff_stride += 1;
  }

  for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < total_count;
       idx += blockDim.x * gridDim.x) {
    int x = idx % w;
    int y = (idx / w) % h;
    int out_c = (idx / (h * w)) % output_chans;
    int b = (idx / (output_chans * w * h));

    T gx = (x + 0.5f) * gw / (1.0f * w);
    T gy = (y + 0.5f) * gh / (1.0f * h);
    T gz = guide[x + w * (y + h * b)] * gd;

    int fx = static_cast<int>(floor(gx - 0.5f));
    int fy = static_cast<int>(floor(gy - 0.5f));
    int fz = static_cast<int>(floor(gz - 0.5f));

    int sy = gw;
    int sz = gw * gh;
    int sc = gd * gw * gh;
    int sb = grid_chans * gd * gw * gh;

    T value = 0.0f;
    for (int in_c = 0; in_c < coeff_stride; ++in_c) {
      T coeff_sample = 0.0f;

      for (int xx = fx; xx < fx + 2; ++xx) {
        int x_ = max(min(xx, gw - 1), 0);
        T wx = max(1.0f - abs(xx + 0.5 - gx), 0.0f);

        for (int yy = fy; yy < fy + 2; ++yy) {
          int y_ = max(min(yy, gh - 1), 0);
          T wy = max(1.0f - abs(yy + 0.5 - gy), 0.0f);

          for (int zz = fz; zz < fz + 2; ++zz) {
            int z_ = max(min(zz, gd - 1), 0);
            T wz = WeightZ(zz + 0.5 - gz);
            int c_ = coeff_stride * out_c + in_c;
            int grid_idx = x_ + sy * y_ + sz * z_ + sc * c_ + sb * b;

            coeff_sample += bilateral_grid[grid_idx] * wx * wy * wz;
          }
        }
      }
      if (in_c < input_chans) {
        int input_idx = x + w * (y + h * (in_c + input_chans * b));
        value += coeff_sample * input[input_idx];
      } else {
        value += coeff_sample;
      }
    }

    output[idx] = value;
  }
}

template <typename T>
class BilateralSliceOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* guide = ctx.Input<Tensor>("Guide");
    auto* output = ctx.Output<Tensor>("Out");

    auto* output_data = output->mutable_data<T>(ctx.GetPlace());
    auto* grid_data = grid->data<T>();
    auto* guide_data = guide->data<T>();
    auto* input_data = input->data<T>();

    bool has_offset = ctx.Attr<bool>("has_offset");
    auto input_dims = input->dims();
    auto output_dims = output->dims();
    auto grid_dims = grid->dims();

    int batch_size = input_dims[0];
    int h = input_dims[2];
    int w = input_dims[3];
    int input_chans = input_dims[1];
    int coeff_stride = input_chans;
    int grid_chans = input_chans * output_dims[1];

    int64_t coeffs_chans = grid_dims[1];
    int64_t gd = grid_dims[2];
    int64_t gh = grid_dims[3];
    int64_t gw = grid_dims[4];

    GridSizes grid_sizes;
    grid_sizes.h = h;
    grid_sizes.w = w;
    grid_sizes.bs = batch_size;
    grid_sizes.coeffs_chans = coeffs_chans;
    grid_sizes.gd = gd;
    grid_sizes.gh = gh;
    grid_sizes.gw = gw;
    grid_sizes.input_chans = input_chans;

    int total_count = batch_size * h * w * output_dims[1];

    platform::GpuLaunchConfig config =
168
        platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(), total_count);
L
LielinJiang 已提交
169

170 171 172
    BilateralSliceCudaForwardKernel<
        T><<<config.block_per_grid, config.thread_per_block, 0,
             ctx.cuda_device_context().stream()>>>(
L
LielinJiang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        output_data, grid_data, guide_data, input_data, grid_sizes, has_offset,
        total_count, output_dims[1]);
  }
};

template <typename T>
__global__ void BilateralSliceCudaGridGradKernel(
    T* out_grid_grad, const T* upstream_grad, const T* guide, const T* input,
    GridSizes gsz, bool has_offset, int grid_count, int output_chans) {
  int h = gsz.h;
  int w = gsz.w;
  int gd = gsz.gd;
  int gh = gsz.gh;
  int gw = gsz.gw;
  int input_chans = gsz.input_chans;
  int grid_chans = input_chans * output_chans;
  int coeff_stride = input_chans;

  if (has_offset) {
    grid_chans += output_chans;
    coeff_stride += 1;
  }

  for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < grid_count;
       idx += blockDim.x * gridDim.x) {
    int gx = idx % gw;
    int gy = (idx / gw) % gh;
    int gz = (idx / (gh * gw)) % gd;
    int c = (idx / (gd * gh * gw)) % grid_chans;
    int b = (idx / (grid_chans * gd * gw * gh));

    T scale_w = w * 1.0 / gw;
    T scale_h = h * 1.0 / gh;

    int left_x = static_cast<int>(floor(scale_w * (gx + 0.5 - 1)));
    int right_x = static_cast<int>(ceil(scale_w * (gx + 0.5 + 1)));
    int left_y = static_cast<int>(floor(scale_h * (gy + 0.5 - 1)));
    int right_y = static_cast<int>(ceil(scale_h * (gy + 0.5 + 1)));

    int sy = w;
    int sc = w * h;
    int sb = output_chans * w * h;

    int isy = w;
    int isc = h * w;
    int isb = input_chans * h * w;

    int out_c = c / coeff_stride;
    int in_c = c % coeff_stride;

    T value = 0.0f;
    for (int x = left_x; x < right_x; ++x) {
      int x_ = x;

      if (x_ < 0) {
        x_ = -x_ - 1;
      }
      if (x_ >= w) {
        x_ = 2 * w - 1 - x_;
      }

      T gx2 = (x + 0.5f) / scale_w;
      T wx = max(1.0f - abs(gx + 0.5 - gx2), 0.0f);

      for (int y = left_y; y < right_y; ++y) {
        int y_ = y;

        if (y_ < 0) {
          y_ = -y_ - 1;
        }
        if (y_ >= h) {
          y_ = 2 * h - 1 - y_;
        }

        T gy2 = (y + 0.5f) / scale_h;
        T wy = max(1.0f - abs(gy + 0.5 - gy2), 0.0f);

        int guide_idx = x_ + w * y_ + h * w * b;
        T gz2 = guide[guide_idx] * gd;
        T wz = WeightZ(gz + 0.5f - gz2);
        if (((gz == 0) && (gz2 < 0.5f)) ||
            ((gz == (gd - 1)) && (gz2 > (gd - 0.5f)))) {
          wz = 1.0f;
        }

        int back_idx = x_ + sy * y_ + sc * out_c + sb * b;
        if (in_c < input_chans) {
          int input_idx = x_ + isy * y_ + isc * in_c + isb * b;
          value += wz * wx * wy * upstream_grad[back_idx] * input[input_idx];
        } else {
          value += wz * wx * wy * upstream_grad[back_idx];
        }
      }
    }
    out_grid_grad[idx] = value;
  }
}

template <typename T>
__global__ void BilateralSliceCudaGuideGradKernel(
    T* out_guide_grad, const T* upstream_grad, const T* bilateral_grid,
    const T* guide, const T* input, GridSizes gsz, bool has_offset,
    int guide_count, int output_chans) {
  int h = gsz.h;
  int w = gsz.w;
  int gd = gsz.gd;
  int gh = gsz.gh;
  int gw = gsz.gw;
  int input_chans = gsz.input_chans;
  int grid_chans = input_chans * output_chans;
  int coeff_stride = input_chans;

  if (has_offset) {
    grid_chans += output_chans;
    coeff_stride += 1;
  }

  for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < guide_count;
       idx += blockDim.x * gridDim.x) {
    int x = idx % w;
    int y = (idx / w) % h;
    int b = (idx / (w * h));

    T gx = (x + 0.5f) * gw / (1.0f * w);
    T gy = (y + 0.5f) * gh / (1.0f * h);
    T gz = guide[x + w * (y + h * b)] * gd;

    int fx = static_cast<int>(floor(gx - 0.5f));
    int fy = static_cast<int>(floor(gy - 0.5f));
    int fz = static_cast<int>(floor(gz - 0.5f));

    int sy = gw;
    int sz = gh * gw;
    int sc = gd * gh * gw;
    int sb = grid_chans * gd * gw * gh;

    T out_sum = 0.0f;
    for (int out_c = 0; out_c < output_chans; ++out_c) {
      T in_sum = 0.0f;
      for (int in_c = 0; in_c < coeff_stride; ++in_c) {
        T grid_sum = 0.0f;
        for (int xx = fx; xx < fx + 2; ++xx) {
          int x_ = max(min(xx, gw - 1), 0);
          T wx = max(1.0f - abs(xx + 0.5 - gx), 0.0f);

          for (int yy = fy; yy < fy + 2; ++yy) {
            int y_ = max(min(yy, gh - 1), 0);
            T wy = max(1.0f - abs(yy + 0.5 - gy), 0.0f);

            for (int zz = fz; zz < fz + 2; ++zz) {
              int z_ = max(min(zz, gd - 1), 0);
              T dwz = gd * DweightZ(zz + 0.5 - gz);

              int c_ = coeff_stride * out_c + in_c;
              int grid_idx = x_ + sy * y_ + sz * z_ + sc * c_ + sb * b;
              grid_sum += bilateral_grid[grid_idx] * wx * wy * dwz;
            }
          }
        }

        if (in_c < input_chans) {
          in_sum +=
              grid_sum * input[x + w * (y + h * (in_c + input_chans * b))];
        } else {
          in_sum += grid_sum;
        }
      }

      out_sum +=
          in_sum * upstream_grad[x + w * (y + h * (out_c + output_chans * b))];
    }

    out_guide_grad[idx] = out_sum;
  }
}

template <typename T>
__global__ void BilateralSliceCudaInputGradKernel(
    T* out_input_grad, const T* upstream_grad, const T* bilateral_grid,
    const T* guide, GridSizes gsz, bool has_offset, int input_count,
    int output_chans) {
  int h = gsz.h;
  int w = gsz.w;
  int gd = gsz.gd;
  int gh = gsz.gh;
  int gw = gsz.gw;
  int input_chans = gsz.input_chans;
  int grid_chans = input_chans * output_chans;
  int coeff_stride = input_chans;

  if (has_offset) {
    grid_chans += output_chans;
    coeff_stride += 1;
  }

  for (int idx = blockIdx.x * blockDim.x + threadIdx.x; idx < input_count;
       idx += blockDim.x * gridDim.x) {
    int x = idx % w;
    int y = (idx / w) % h;
    int in_c = (idx / (h * w)) % input_chans;
    int b = (idx / (input_chans * w * h));

    T gx = (x + 0.5f) * gw / (1.0f * w);
    T gy = (y + 0.5f) * gh / (1.0f * h);
    T gz = guide[x + w * (y + h * b)] * gd;

    int fx = static_cast<int>(floor(gx - 0.5f));
    int fy = static_cast<int>(floor(gy - 0.5f));
    int fz = static_cast<int>(floor(gz - 0.5f));

    int sy = gw;
    int sz = gh * gw;
    int sc = gd * gh * gw;
    int sb = grid_chans * gd * gh * gw;

    T value = 0.0f;
    for (int out_c = 0; out_c < output_chans; ++out_c) {
      T chan_val = 0.0f;

      for (int xx = fx; xx < fx + 2; ++xx) {
        int x_ = max(min(xx, gw - 1), 0);
        T wx = max(1.0f - abs(xx + 0.5 - gx), 0.0f);

        for (int yy = fy; yy < fy + 2; ++yy) {
          int y_ = max(min(yy, gh - 1), 0);
          T wy = max(1.0f - abs(yy + 0.5 - gy), 0.0f);

          for (int zz = fz; zz < fz + 2; ++zz) {
            int z_ = max(min(zz, gd - 1), 0);

            T wz = WeightZ(zz + 0.5 - gz);

            int c_ = coeff_stride * out_c + in_c;
            int grid_idx = x_ + sy * y_ + sz * z_ + sc * c_ + sb * b;
            chan_val += bilateral_grid[grid_idx] * wx * wy * wz;
          }
        }
      }

      value += chan_val *
               upstream_grad[x + w * (y + h * (out_c + output_chans * b))];
    }
    out_input_grad[idx] = value;
  }
}

template <typename T>
class BilateralSliceGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* guide = ctx.Input<Tensor>("Guide");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
    auto* guide_grad = ctx.Output<Tensor>(framework::GradVarName("Guide"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

    const T* input_data = input->data<T>();
    const T* guide_data = guide->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();

    T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    T* guide_grad_data = guide_grad->mutable_data<T>(ctx.GetPlace());
    T* grid_grad_data = grid_grad->mutable_data<T>(ctx.GetPlace());

    bool has_offset = ctx.Attr<bool>("has_offset");

    auto input_grad_dims = input_grad->dims();
    auto grid_dims = grid_grad->dims();

    int batch_size = input_grad_dims[0];
    int h = input_grad_dims[2];
    int w = input_grad_dims[3];
    int input_chans = input_grad_dims[1];

    int64_t coeffs_chans = grid_dims[1];
    int64_t gd = grid_dims[2];
    int64_t gh = grid_dims[3];
    int64_t gw = grid_dims[4];

    int output_chans = 0;
    if (has_offset) {
      output_chans = coeffs_chans / (input_chans + 1);
    } else {
      output_chans = coeffs_chans / input_chans;
    }
    int grid_count = batch_size * gh * gw * gd * coeffs_chans;
    int guide_count = batch_size * h * w;
    int input_count = batch_size * h * w * input_chans;

    GridSizes grid_sizes;
    grid_sizes.h = h;
    grid_sizes.w = w;
    grid_sizes.bs = batch_size;
    grid_sizes.coeffs_chans = coeffs_chans;
    grid_sizes.gd = gd;
    grid_sizes.gh = gh;
    grid_sizes.gw = gw;
    grid_sizes.input_chans = input_chans;

475 476
    platform::GpuLaunchConfig config = platform::GetGpuLaunchConfig1D(
        ctx.cuda_device_context(), grid_count, 512);
L
LielinJiang 已提交
477

478 479 480
    BilateralSliceCudaGridGradKernel<
        T><<<config.block_per_grid, config.thread_per_block, 0,
             ctx.cuda_device_context().stream()>>>(
L
LielinJiang 已提交
481 482 483
        grid_grad_data, output_grad_data, guide_data, input_data, grid_sizes,
        has_offset, grid_count, output_chans);

484 485
    config = platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(),
                                            guide_count, 512);
L
LielinJiang 已提交
486

487 488 489
    BilateralSliceCudaGuideGradKernel<
        T><<<config.block_per_grid, config.thread_per_block, 0,
             ctx.cuda_device_context().stream()>>>(
L
LielinJiang 已提交
490 491 492
        guide_grad_data, output_grad_data, grid_data, guide_data, input_data,
        grid_sizes, has_offset, guide_count, output_chans);

493 494
    config = platform::GetGpuLaunchConfig1D(ctx.cuda_device_context(),
                                            input_count, 512);
L
LielinJiang 已提交
495

496 497 498
    BilateralSliceCudaInputGradKernel<
        T><<<config.block_per_grid, config.thread_per_block, 0,
             ctx.cuda_device_context().stream()>>>(
L
LielinJiang 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512
        input_grad_data, output_grad_data, grid_data, guide_data, grid_sizes,
        has_offset, input_count, output_chans);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(bilateral_slice, ops::BilateralSliceOpCUDAKernel<float>,
                        ops::BilateralSliceOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(bilateral_slice_grad,
                        ops::BilateralSliceGradOpCUDAKernel<float>,
                        ops::BilateralSliceGradOpCUDAKernel<double>);