elementwise_div_op_npu.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ElementwiseDivNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

L
Leo Chen 已提交
43
    const auto& runner = NpuOpRunner("Div", {*x, *y}, {*out}, {});
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    auto place = ctx.GetPlace();

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (dx) {
      dx->mutable_data<T>(place);

P
pangyoki 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
      Tensor tensor_one(y->type());
      tensor_one.mutable_data<float>({1}, place);
      FillNpuTensorWithConstant<float>(&tensor_one, static_cast<float>(1.0));

      // Use `Div` CANN OP to achieve `1/y` instead of `Power` CANN OP.
      // Because `Power` will cause precision overflow, that is, `float_status`
      // will be set to 1.
      Tensor y_div(y->type());
      y_div.mutable_data<T>(y->dims(), place);
      const auto& runner_one_div_y =
          NpuOpRunner("Div", {tensor_one, *y}, {y_div}, {});
      runner_one_div_y.Run(stream);

82 83
      Tensor tensor_zeros(x->type());
      tensor_zeros.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
84
      const auto& runner_tensor_zeros =
85
          NpuOpRunner("ZerosLike", {*x}, {tensor_zeros}, {});
L
Leo Chen 已提交
86
      runner_tensor_zeros.Run(stream);
87 88 89

      Tensor x_zero(paddle::framework::proto::VarType::BOOL);
      x_zero.mutable_data<bool>(x->dims(), place);
L
Leo Chen 已提交
90
      const auto& runner_x_zero =
91
          NpuOpRunner("Equal", {*x, tensor_zeros}, {x_zero}, {});
L
Leo Chen 已提交
92
      runner_x_zero.Run(stream);
93 94 95

      Tensor x_nozero(paddle::framework::proto::VarType::BOOL);
      x_nozero.mutable_data<bool>(x->dims(), place);
L
Leo Chen 已提交
96
      const auto& runner_x_nonzero =
97
          NpuOpRunner("LogicalNot", {x_zero}, {x_nozero}, {});
L
Leo Chen 已提交
98
      runner_x_nonzero.Run(stream);
99 100 101

      Tensor x_nozero_f(x->type());
      x_nozero_f.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
102
      const auto& runner_x_nonzero_f =
103 104
          NpuOpRunner("Cast", {x_nozero}, {x_nozero_f},
                      {{"dst_type", static_cast<int32_t>(0)}});
L
Leo Chen 已提交
105
      runner_x_nonzero_f.Run(stream);
106 107 108

      Tensor x_grad_w(x->type());
      x_grad_w.mutable_data<T>(x->dims(), place);
L
Leo Chen 已提交
109
      const auto& runner_x_grad_w =
P
pangyoki 已提交
110
          NpuOpRunner("Mul", {x_nozero_f, y_div}, {x_grad_w}, {});
L
Leo Chen 已提交
111
      runner_x_grad_w.Run(stream);
112

L
Leo Chen 已提交
113 114 115
      const auto& runner_x_grad =
          NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {});
      runner_x_grad.Run(stream);
116 117 118 119 120 121 122
    }

    if (dy) {
      dy->mutable_data<T>(place);

      Tensor neg_out(y->type());
      neg_out.mutable_data<T>(y->dims(), place);
L
Leo Chen 已提交
123 124
      const auto& runner_neg_out = NpuOpRunner("Neg", {*out}, {neg_out}, {});
      runner_neg_out.Run(stream);
125 126 127

      Tensor y_grad_w(y->type());
      y_grad_w.mutable_data<T>(y->dims(), place);
L
Leo Chen 已提交
128 129 130
      const auto& runner_y_grad_w =
          NpuOpRunner("Div", {neg_out, *y}, {y_grad_w}, {});
      runner_y_grad_w.Run(stream);
131

L
Leo Chen 已提交
132 133 134
      const auto& runner_y_grad =
          NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {});
      runner_y_grad.Run(stream);
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    elementwise_div,
    ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext,
                                 paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    elementwise_div_grad,
    ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext,
                                     paddle::platform::float16>);