test_multi_pass_reader.py 2.5 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle.fluid as fluid
18 19
import paddle
import paddle.dataset.mnist as mnist
F
fengjiayi 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


class TestMultipleReader(unittest.TestCase):
    def setUp(self):
        self.batch_size = 64
        self.pass_num = 3
        # Convert mnist to recordio file
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data_file = paddle.batch(mnist.train(), batch_size=self.batch_size)
            feeder = fluid.DataFeeder(
                feed_list=[
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            self.num_batch = fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist.recordio', data_file, feeder)

    def test_main(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data_file = fluid.layers.open_recordio_file(
                filename='./mnist.recordio',
                shapes=[(-1, 784), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            data_file = fluid.layers.create_multi_pass_reader(
                reader=data_file, pass_num=self.pass_num)
            img, label = fluid.layers.read_file(data_file)

            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            else:
                place = fluid.CPUPlace()

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            batch_count = 0
            while not data_file.eof():
                img_val, = exe.run(fetch_list=[img])
                batch_count += 1
                self.assertLessEqual(img_val.shape[0], self.batch_size)
            data_file.reset()
            self.assertEqual(batch_count, self.num_batch * self.pass_num)