quantize_op.cc 4.1 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/operators/quantize_op.h"
X
xiaolil1 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename DeviceContext, typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* output = ctx.Output<Tensor>("Output");

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();
 
    std::vector<primitive> pipeline;
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    std::vector<T> scale_data = {*(scale->data<T>())};

    mkldnn::primitive_attr attri;
    int mask = 0;
    attri.set_output_scales(mask, scale_data);

    auto src_md = platform::MKLDNNMemDesc(
            {src_tz}, memory::data_type::f32, input->format());
X
xiaolil1 已提交
59
    auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
X
xiaolil1 已提交
60 61 62 63 64
    auto src_memory = std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
    std::shared_ptr<primitive::at> src_memory_p = std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

    auto dst_md = platform::MKLDNNMemDesc(
            {dst_tz}, memory::data_type::u8, memory::format::nhwc);
X
xiaolil1 已提交
65
    auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
X
xiaolil1 已提交
66 67 68 69 70 71 72 73 74
    auto dst_memory = mkldnn::memory(dst_pd, to_void_cast<T>(output_data));
    
    auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
        new reorder::primitive_desc(dst_pd, src_pd, attri));    
    auto reorder_p= std::shared_ptr<reorder>(new reorder(*reorder_pd, *src_memory_p, dst_memory));
    pipeline.push_back(*reorder_p);
  }
};

X
xiaolil1 已提交
75 76 77 78 79 80 81 82 83
framework::OpKernelType QuantOp::GetExpectedKernelType(const framework::ExecutionContext& ctx) const {
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
  }
X
xiaolil1 已提交
84
  return framework::OpKernelType(
X
xiaolil1 已提交
85 86
      framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),ctx.GetPlace(),layout_, library_);
      //ctx.device_context());
X
xiaolil1 已提交
87 88 89 90 91 92 93
}


void QuantOpMaker::Make() {
  AddInput("Input","input");
  AddInput("Scale","scale...");
  AddOutput("Output","output");
X
xiaolil1 已提交
94 95 96
  AddComment(R"DOC(
This op will quantize data from FP32 to INT8
)DOC");
X
xiaolil1 已提交
97 98 99 100 101 102 103
}

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;


104
REGISTER_OPERATOR(quantize, ops::QuantOp, ops::QuantOpMaker, paddle::framework::DefaultGradOpDescMaker<true>);
X
xiaolil1 已提交
105

106
REGISTER_OP_CPU_KERNEL(quantize, ops::QuantOpKernel<paddle::platform::CPUDeviceContext, float>);
X
xiaolil1 已提交
107 108 109 110 111 112 113

//REGISTER_OP_KERNEL(quantization, MKLDNN, paddle::platform::CPUPlace, ops::QuantOpKernel<paddle::platform::CPUDeviceContext, float>);