test_multiclass_nms_op.py 16.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17 18
import unittest
import numpy as np
import copy
19
from op_test import OpTest
20 21


J
jerrywgz 已提交
22
def iou(box_a, box_b, norm):
23 24 25 26 27 28 29 30 31 32 33 34
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
35 36 37 38
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
39 40 41 42 43 44 45 46
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

J
jerrywgz 已提交
47 48
    inter_area = max(xb - xa + (norm == False),
                     0.0) * max(yb - ya + (norm == False), 0.0)
49 50 51 52 53 54

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
55 56 57 58 59 60 61
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
62 63 64 65 66
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
67 68 69 70 71 72
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
73 74 75 76 77 78 79 80 81
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

82
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
83
    sorted_scores = all_scores[sorted_indices]
84
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
85
    if top_k > -1 and top_k < sorted_indices.shape[0]:
86 87 88 89 90 91 92 93 94 95 96
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
97
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
98
                keep = True if overlap <= adaptive_threshold else False
99 100 101 102 103 104 105 106 107 108
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
109 110 111 112 113 114 115
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
116

117
    selected_indices = {}
118 119 120
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
121 122 123 124 125 126
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
127
        selected_indices[c] = indices
128 129 130 131
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
132
        for c, indices in selected_indices.items():
133
            for idx in indices:
J
jerrywgz 已提交
134 135 136 137
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
138 139 140 141

        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True)
        sorted_score_index = sorted_score_index[:keep_top_k]
142 143 144 145
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
146
        for s, c, idx in sorted_score_index:
147
            selected_indices[c].append(idx)
J
jerrywgz 已提交
148 149 150
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
151
        num_det = keep_top_k
152

153
    return selected_indices, num_det
154 155


J
jerrywgz 已提交
156 157 158
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
159
    num_class = boxes.shape[1]
J
jerrywgz 已提交
160 161 162 163 164 165
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
166
        offset = head
J
jerrywgz 已提交
167 168 169 170 171 172 173 174 175 176 177
        head = head + box_lod[0][n]
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False)
178 179
        lod.append(nmsed_num)

J
jerrywgz 已提交
180 181
        if nmsed_num == 0:
            continue
182
        tmp_det_out = []
J
jerrywgz 已提交
183 184 185
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
186 187 188 189
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
190 191 192
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
193 194 195 196 197 198 199 200 201 202 203 204

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
205
    batch_size = scores.shape[0]
206
    num_boxes = scores.shape[2]
207
    det_outs = []
208
    index_outs = []
209
    lod = []
210
    for n in range(batch_size):
J
jerrywgz 已提交
211 212 213 214 215 216 217 218 219 220
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True)
221 222
        lod.append(nmsed_num)

J
jerrywgz 已提交
223 224
        if nmsed_num == 0:
            continue
225
        tmp_det_out = []
226
        for c, indices in nmsed_outs.items():
227
            for idx in indices:
228
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
229 230 231 232
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
233 234 235
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
236 237 238 239
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
240 241 242
    def set_argument(self):
        self.score_threshold = 0.01

243
    def setUp(self):
244
        self.set_argument()
245
        N = 7
246
        M = 1200
247 248 249 250 251 252
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
253
        score_threshold = self.score_threshold
254

D
dangqingqing 已提交
255 256 257 258 259 260 261 262 263 264 265
        scores = np.random.random((N * M, C)).astype('float32')

        def softmax(x):
            shiftx = x - np.max(x).clip(-64.)
            exps = np.exp(shiftx)
            return exps / np.sum(exps)

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

266 267 268
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
269

270 271 272 273 274 275 276
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
277 278

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
279
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
280
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
281 282 283 284 285 286 287
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
288
            'normalized': True,
D
dangqingqing 已提交
289
        }
290 291 292 293 294

    def test_check_output(self):
        self.check_output()


295 296 297
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
298
        # In practical use, 0.0 < score_threshold < 1.0
299 300 301
        self.score_threshold = 2.0


J
jerrywgz 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        def softmax(x):
            shiftx = x - np.max(x).clip(-64.)
            exps = np.exp(shiftx)
            return exps / np.sum(exps)

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

334
        det_outs, lod = lod_multiclass_nms(
J
jerrywgz 已提交
335 336
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)
337 338 339
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


360 361 362 363 364 365
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
366
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
367 368 369
        self.assertTrue(np.allclose(calc_output, expt_output))


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        def softmax(x):
            shiftx = x - np.max(x).clip(-64.)
            exps = np.exp(shiftx)
            return exps / np.sum(exps)

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        def softmax(x):
            shiftx = x - np.max(x).clip(-64.)
            exps = np.exp(shiftx)
            return exps / np.sum(exps)

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

        det_outs, lod = lod_multiclass_nms(
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


502 503
if __name__ == '__main__':
    unittest.main()