selected_rows_impl.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/selected_rows_impl.h"
16
#include "paddle/phi/common/memory_utils.h"
17
#include "paddle/phi/core/utils/data_type.h"
18

19
namespace phi {
20 21

struct ReAllocateVisitor {
22
  ReAllocateVisitor(const phi::DDim& dims, phi::DenseTensor* tensor)
23 24 25 26
      : dims_(dims), tensor_(tensor) {}

  template <typename T>
  void operator()() const {
27
    phi::DenseTensor cpu_tensor;
28
    phi::CPUPlace cpu;
29 30 31 32 33 34 35 36 37
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

38 39
  phi::DDim dims_;
  phi::DenseTensor* tensor_;
40 41 42
};

struct TensorCopyVisitor {
43
  TensorCopyVisitor(phi::DenseTensor* dst,
44
                    int64_t dst_offset,
45
                    const phi::DenseTensor src,
46 47 48 49 50 51 52 53 54 55 56
                    int64_t src_offset,
                    int64_t size)
      : dst_(dst),
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(Yancey1989): support other place
57
    phi::CPUPlace cpu;
58 59 60
    std::memcpy(dst_->mutable_data<T>(cpu) + dst_offset_,
                src_.data<T>() + src_offset_,
                size_ * sizeof(T));
61 62
  }

63
  phi::DenseTensor* dst_;
64
  int64_t dst_offset_;
65
  phi::DenseTensor src_;
66 67 68 69 70
  int64_t src_offset_;
  int64_t size_;
};

struct TensorFillVisitor {
71
  TensorFillVisitor(phi::DenseTensor* dst,
72 73 74 75 76 77 78 79
                    int64_t dst_offset,
                    int64_t size,
                    float value)
      : dst_(dst), dst_offset_(dst_offset), size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(qiao): support other place
80
    phi::CPUPlace cpu;
81 82 83 84 85 86
    auto* tensor_data = dst_->mutable_data<T>(cpu);
    auto* start = tensor_data + dst_offset_;
    auto* end = start + size_;
    std::fill(start, end, static_cast<T>(0.0));
  }

87
  phi::DenseTensor* dst_;
88 89 90 91
  int64_t dst_offset_;
  int64_t size_;
};

J
Jiabin Yang 已提交
92 93
void* SelectedRowsImpl::AllocateFrom(Allocator* allocator,
                                     DataType dtype,
94 95 96
                                     size_t requested_size,
                                     bool fake_alloc) {
  return value_->AllocateFrom(allocator, dtype, requested_size, fake_alloc);
97 98
}

J
Jiabin Yang 已提交
99
bool SelectedRowsImpl::HasKey(int64_t key) const {
100 101 102 103
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

J
Jiabin Yang 已提交
104 105 106
int64_t SelectedRowsImpl::AutoGrownIndex(int64_t key,
                                         bool auto_grown,
                                         bool is_test) {
107 108 109 110 111 112 113 114 115 116 117 118 119
  if (is_test) {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

  rwlock_->RDLock();
  auto iter = id_to_index_.find(key);
  if (iter == id_to_index_.end()) {
    rwlock_->UNLock();
120 121 122 123
    PADDLE_ENFORCE_EQ(
        auto_grown,
        true,
        phi::errors::NotFound("Input key(%lld) is not found.", key));
124 125 126 127 128
    rwlock_->WRLock();
    auto map_size = id_to_index_.size();
    auto vector_size = rows_.size();
    if (map_size != vector_size) {
      rwlock_->UNLock();
129
      PADDLE_THROW(phi::errors::InvalidArgument(
130 131 132 133 134 135 136 137 138
          "Row map size(%zu) should be equal to rows size(%zu).",
          map_size,
          vector_size));
    }
    auto write_iter = id_to_index_.find(key);
    if (write_iter == id_to_index_.end()) {
      int row_num = rows_.size();
      if (row_num == value_->dims()[0]) {
        rwlock_->UNLock();
139
        PADDLE_THROW(phi::errors::InvalidArgument(
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            "Selected rows is full, then length exceed the length of first "
            "dimension (%d).",
            row_num));
      }
      // key logic to put a key into id_to_index_
      rows_.push_back(key);
      auto index = static_cast<int64_t>(rows_.size() - 1);
      id_to_index_[key] = index;
      rwlock_->UNLock();
      return index;
    } else {
      auto index = write_iter->second;
      rwlock_->UNLock();
      return index;
    }
  } else {
    auto index = iter->second;
    rwlock_->UNLock();
    return index;
  }
}

J
Jiabin Yang 已提交
162
void SelectedRowsImpl::SyncIndex() {
163 164 165 166 167 168 169 170
  rwlock_->WRLock();
  id_to_index_.clear();
  for (size_t i = 0; i < rows_.size(); ++i) {
    id_to_index_[rows_[i]] = i;
  }
  rwlock_->UNLock();
}

171 172
void SelectedRowsImpl::Get(const phi::DenseTensor& ids,
                           phi::DenseTensor* value,
J
Jiabin Yang 已提交
173 174
                           bool auto_grown,
                           bool is_test) {
175 176 177 178
  PADDLE_ENFORCE_EQ(
      value->IsInitialized(),
      true,
      phi::errors::InvalidArgument("The value tensor is not initialized."));
179 180 181 182 183 184 185
  if (ids.numel() == 0) {
    VLOG(3) << "keys is empty, please check data!";
  } else {
    int64_t value_width = value_->numel() / value_->dims()[0];
    PADDLE_ENFORCE_EQ(
        value_width,
        value->numel() / value->dims()[0],
186
        phi::errors::InvalidArgument(
187 188 189 190 191 192 193 194 195 196
            "Output tensor should have the same shape with table "
            "except the first dimmension, excepted value width not counting "
            "the first dimension is %d, actual value width is %d.",
            value_width,
            value->numel() / value->dims()[0]));
    for (int i = 0; i < ids.numel(); ++i) {
      auto id = ids.data<int64_t>()[i];
      int64_t index = AutoGrownIndex(id, auto_grown, is_test);
      if (index < 0) {
        VLOG(5) << "id " << id << " not in the table, return 0";
197
        phi::VisitDataType(
198
            value_->dtype(),
199 200
            TensorFillVisitor(value, i * value_width, value_width, 0.0));
      } else {
201 202 203 204 205 206
        phi::VisitDataType(value_->dtype(),
                           TensorCopyVisitor(value,
                                             i * value_width,
                                             *value_.get(),
                                             index * value_width,
                                             value_width));
207 208 209 210
      }
    }
  }
}
211
}  // namespace phi