reindex.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, Variable
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid import core
from paddle import _C_ops, _legacy_C_ops

__all__ = []


25 26 27
def reindex_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
28 29 30 31
    """
    Reindex Graph API.

    This API is mainly used in Graph Learning domain, which should be used
32 33
    in conjunction with `paddle.geometric.sample_neighbors` API. And the main purpose
    is to reindex the ids information of the input nodes, and return the
34 35
    corresponding graph edges after reindex.

36 37 38 39
    Take input nodes x = [0, 1, 2] as an example. If we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1 is [0, 4, 7], and the neighbors of 2 is [6, 7].
    Then after graph_reindex, we will have 3 different outputs: reindex_src: [3, 4, 0, 5, 6, 7, 6], reindex_dst: [0, 0, 1, 1, 1, 2, 2]
    and out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]. We can see that the numbers in `reindex_src` and `reindex_dst` is the corresponding index
40 41
    of nodes in `out_nodes`.

42 43 44
    Note:
        The number in x should be unique, otherwise it would cause potential errors. We will reindex all the nodes from 0.

45 46 47 48 49
    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
        neighbors (Tensor): The neighbors of the input nodes `x`. The data type
                            should be the same with `x`.
50
        count (Tensor): The neighbor count of the input nodes `x`. And the
51 52 53 54 55
                        data type should be int32.
        value_buffer (Tensor|None): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
        index_buffer (Tensor|None): Index buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
56
                                    `value_buffer` and `index_buffer` should be both not None
57 58 59
                                    if you want to speed up by using hashtable buffer.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.
60

61
    Returns:
62
        - reindex_src (Tensor), the source node index of graph edges after reindex.
63

64
        - reindex_dst (Tensor), the destination node index of graph edges after reindex.
65

66
        - out_nodes (Tensor), the index of unique input nodes and neighbors before reindex, where we put the input nodes `x` in the front, and put neighbor nodes in the back.
67

68 69
    Examples:
        .. code-block:: python
70

71 72 73 74 75 76 77 78 79 80 81
            import paddle
            x = [0, 1, 2]
            neighbors = [8, 9, 0, 4, 7, 6, 7]
            count = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors = paddle.to_tensor(neighbors, dtype="int64")
            count = paddle.to_tensor(count, dtype="int32")
            reindex_src, reindex_dst, out_nodes = paddle.geometric.reindex_graph(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6]
82 83

    """
84 85 86
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
87 88

    if _non_static_mode():
89 90 91 92 93 94 95 96 97
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
98 99 100
        return reindex_src, reindex_dst, out_nodes

    check_variable_and_dtype(x, "X", ("int32", "int64"), "graph_reindex")
101 102 103
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
104 105 106
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
107 108 109 110 111 112
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
113 114 115 116 117

    helper = LayerHelper("reindex_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
134 135 136
    return reindex_src, reindex_dst, out_nodes


137 138 139
def reindex_heter_graph(
    x, neighbors, count, value_buffer=None, index_buffer=None, name=None
):
140 141 142 143
    """
    Reindex HeterGraph API.

    This API is mainly used in Graph Learning domain, which should be used
144
    in conjunction with `paddle.geometric.sample_neighbors` API. And the main purpose
145 146 147
    is to reindex the ids information of the input nodes, and return the
    corresponding graph edges after reindex.

148 149 150 151 152 153 154 155
    Take input nodes x = [0, 1, 2] as an example. For graph A, suppose we have neighbors = [8, 9, 0, 4, 7, 6, 7], and count = [2, 3, 2],
    then we know that the neighbors of 0 is [8, 9], the neighbors of 1 is [0, 4, 7], and the neighbors of 2 is [6, 7]. For graph B,
    suppose we have neighbors = [0, 2, 3, 5, 1], and count = [1, 3, 1], then we know that the neighbors of 0 is [0], the neighbors of 1 is [2, 3, 5],
    and the neighbors of 3 is [1]. We will get following outputs: reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1], reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
    and out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5].

    Note:
        The number in x should be unique, otherwise it would cause potential errors. We support multi-edge-types neighbors reindexing in reindex_heter_graph api. We will reindex all the nodes from 0.
156 157 158 159

    Args:
        x (Tensor): The input nodes which we sample neighbors for. The available
                    data type is int32, int64.
160
        neighbors (list|tuple): The neighbors of the input nodes `x` from different graphs.
161
                                The data type should be the same with `x`.
162
        count (list|tuple): The neighbor counts of the input nodes `x` from different graphs.
163 164 165 166 167 168 169 170 171 172 173
                            And the data type should be int32.
        value_buffer (Tensor|None): Value buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
        index_buffer (Tensor|None): Index buffer for hashtable. The data type should be int32,
                                    and should be filled with -1. Only useful for gpu version.
                                    `value_buffer` and `index_buffer` should be both not None
                                    if you want to speed up by using hashtable buffer.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
174
        - reindex_src (Tensor), the source node index of graph edges after reindex.
175

176
        - reindex_dst (Tensor), the destination node index of graph edges after reindex.
177

178 179 180
        - out_nodes (Tensor), the index of unique input nodes and neighbors before reindex,
                              where we put the input nodes `x` in the front, and put neighbor
                              nodes in the back.
181

182 183
    Examples:
        .. code-block:: python
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            import paddle
            x = [0, 1, 2]
            neighbors_a = [8, 9, 0, 4, 7, 6, 7]
            count_a = [2, 3, 2]
            x = paddle.to_tensor(x, dtype="int64")
            neighbors_a = paddle.to_tensor(neighbors_a, dtype="int64")
            count_a = paddle.to_tensor(count_a, dtype="int32")
            neighbors_b = [0, 2, 3, 5, 1]
            count_b = [1, 3, 1]
            neighbors_b = paddle.to_tensor(neighbors_b, dtype="int64")
            count_b = paddle.to_tensor(count_b, dtype="int32")
            neighbors = [neighbors_a, neighbors_b]
            count = [count_a, count_b]
            reindex_src, reindex_dst, out_nodes = paddle.geometric.reindex_heter_graph(x, neighbors, count)
            # reindex_src: [3, 4, 0, 5, 6, 7, 6, 0, 2, 8, 9, 1]
            # reindex_dst: [0, 0, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2]
            # out_nodes: [0, 1, 2, 8, 9, 4, 7, 6, 3, 5]
202 203

    """
204 205 206
    use_buffer_hashtable = (
        True if value_buffer is not None and index_buffer is not None else False
    )
207 208 209 210

    if _non_static_mode():
        neighbors = paddle.concat(neighbors, axis=0)
        count = paddle.concat(count, axis=0)
211 212 213 214 215 216 217 218 219
        reindex_src, reindex_dst, out_nodes = _legacy_C_ops.graph_reindex(
            x,
            neighbors,
            count,
            value_buffer,
            index_buffer,
            "flag_buffer_hashtable",
            use_buffer_hashtable,
        )
220 221 222 223 224 225 226 227 228 229 230
        return reindex_src, reindex_dst, out_nodes

    if isinstance(neighbors, Variable):
        neighbors = [neighbors]
    if isinstance(count, Variable):
        count = [count]

    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)

    check_variable_and_dtype(x, "X", ("int32", "int64"), "heter_graph_reindex")
231 232 233
    check_variable_and_dtype(
        neighbors, "Neighbors", ("int32", "int64"), "graph_reindex"
    )
234 235 236
    check_variable_and_dtype(count, "Count", ("int32"), "graph_reindex")

    if use_buffer_hashtable:
237 238 239 240 241 242
        check_variable_and_dtype(
            value_buffer, "HashTable_Value", ("int32"), "graph_reindex"
        )
        check_variable_and_dtype(
            index_buffer, "HashTable_Index", ("int32"), "graph_reindex"
        )
243 244 245 246 247 248 249

    helper = LayerHelper("reindex_heter_graph", **locals())
    reindex_src = helper.create_variable_for_type_inference(dtype=x.dtype)
    reindex_dst = helper.create_variable_for_type_inference(dtype=x.dtype)
    out_nodes = helper.create_variable_for_type_inference(dtype=x.dtype)
    neighbors = paddle.concat(neighbors, axis=0)
    count = paddle.concat(count, axis=0)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    helper.append_op(
        type="graph_reindex",
        inputs={
            "X": x,
            "Neighbors": neighbors,
            "Count": count,
            "HashTable_Value": value_buffer if use_buffer_hashtable else None,
            "HashTable_Index": index_buffer if use_buffer_hashtable else None,
        },
        outputs={
            "Reindex_Src": reindex_src,
            "Reindex_Dst": reindex_dst,
            "Out_Nodes": out_nodes,
        },
        attrs={"flag_buffer_hashtable": use_buffer_hashtable},
    )
266
    return reindex_src, reindex_dst, out_nodes