math.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.layer_helper import LayerHelper, _non_static_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode

__all__ = []


def segment_sum(data, segment_ids, name=None):
    r"""
    Segment Sum Operator.

    This operator sums the elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\sum_{j} data_{j}$
    where sum is over j such that `segment_ids[j] == i`.

    Args:
        data (Tensor): A tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (Tensor): A 1-D tensor, which have the same size
35
                            with the first dimension of input data.
36
                            Available data type is int32, int64.
37
        name (str, optional): Name for the operation (optional, default is None).
38 39 40
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
41
        - output (Tensor), the reduced result.
42 43 44 45 46 47 48 49 50 51 52 53 54 55

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_sum(data, segment_ids)
            #Outputs: [[4., 4., 4.], [4., 5., 6.]]

    """
    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "SUM")[0]
    if _in_legacy_dygraph():
56 57 58
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "SUM"
        )
59 60 61
        return out

    check_variable_and_dtype(
62 63 64 65 66 67 68 69
        data,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool",
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
70 71 72 73

    helper = LayerHelper("segment_sum", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
74 75 76 77 78 79
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "SUM"},
    )
80 81 82 83 84 85 86
    return out


def segment_mean(data, segment_ids, name=None):
    r"""
    Segment mean Operator.

87
    This operator calculate the mean value of input `data` which
88 89 90 91 92 93 94
    with the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\frac{1}{n_i}  \\sum_{j} data[j]$
    where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
    of all index 'segment_ids[j] == i'.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
95 96
        segment_ids (tensor): a 1-d tensor, which have the same size
                            with the first dimension of input data.
97
                            available data type is int32, int64.
98
        name (str, optional): Name for the operation (optional, default is None).
99 100 101
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
102
        - output (Tensor), the reduced result.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_mean(data, segment_ids)
            #Outputs: [[2., 2., 2.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MEAN")[0]
    if _in_legacy_dygraph():
118 119 120
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MEAN"
        )
121 122 123
        return out

    check_variable_and_dtype(
124 125 126 127 128 129 130 131
        data,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool",
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
132 133 134 135

    helper = LayerHelper("segment_mean", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
136 137 138 139 140 141
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MEAN"},
    )
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    return out


def segment_min(data, segment_ids, name=None):
    r"""
    Segment min operator.

    This operator calculate the minimum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\min_{j} data_{j}$
    where min is over j such that `segment_ids[j] == i`.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (tensor): a 1-d tensor, which have the same size
157
                            with the first dimension of input data.
158
                            available data type is int32, int64.
159
        name (str, optional): Name for the operation (optional, default is None).
160 161 162
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
163
        - output (Tensor), the reduced result.
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_min(data, segment_ids)
            #Outputs:  [[1., 2., 1.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MIN")[0]
    if _in_legacy_dygraph():
179 180 181
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MIN"
        )
182 183 184
        return out

    check_variable_and_dtype(
185 186 187 188 189 190 191 192
        data,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool",
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
193 194 195 196

    helper = LayerHelper("segment_min", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
197 198 199 200 201 202
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MIN"},
    )
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    return out


def segment_max(data, segment_ids, name=None):
    r"""
    Segment max operator.

    This operator calculate the maximum elements of input `data` which with
    the same index in `segment_ids`.
    It computes a tensor such that $out_i = \\max_{j} data_{j}$
    where max is over j such that `segment_ids[j] == i`.

    Args:
        data (tensor): a tensor, available data type float32, float64, int32, int64, float16.
        segment_ids (tensor): a 1-d tensor, which have the same size
218
                            with the first dimension of input data.
219
                            available data type is int32, int64.
220
        name (str, optional): Name for the operation (optional, default is None).
221 222 223
                            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
224
        - output (Tensor), the reduced result.
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
            segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
            out = paddle.geometric.segment_max(data, segment_ids)
            #Outputs: [[3., 2., 3.], [4., 5., 6.]]

    """

    if in_dygraph_mode():
        return _C_ops.segment_pool(data, segment_ids, "MAX")[0]
    if _in_legacy_dygraph():
240 241 242
        out, tmp = _legacy_C_ops.segment_pool(
            data, segment_ids, 'pooltype', "MAX"
        )
243 244 245
        return out

    check_variable_and_dtype(
246 247 248 249 250 251 252 253
        data,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "segment_pool",
    )
    check_variable_and_dtype(
        segment_ids, "SegmentIds", ("int32", "int64"), "segment_pool"
    )
254 255 256 257

    helper = LayerHelper("segment_max", **locals())
    out = helper.create_variable_for_type_inference(dtype=data.dtype)
    summed_ids = helper.create_variable_for_type_inference(dtype=data.dtype)
258 259 260 261 262 263
    helper.append_op(
        type="segment_pool",
        inputs={"X": data, "SegmentIds": segment_ids},
        outputs={"Out": out, "SummedIds": summed_ids},
        attrs={"pooltype": "MAX"},
    )
264
    return out