prior_box_op.cc 6.9 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/prior_box_op.h"

namespace paddle {
namespace operators {

class PriorBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
W
wanghaox 已提交
26
                   "Input(X) of PriorBoxOp should not be null.");
W
wanghaox 已提交
27
    PADDLE_ENFORCE(ctx->HasInput("Image"),
W
wanghaox 已提交
28
                   "Input(Offset) of PriorBoxOp should not be null.");
W
wanghaox 已提交
29 30 31 32 33

    auto image_dims = ctx->GetInputDim("Image");
    auto input_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE(image_dims.size() == 4,
                   "The format of input tensor is NCHW.");
W
wanghaox 已提交
34 35 36 37 38 39 40 41
    PADDLE_ENFORCE(input_dims.size() == 4,
                   "The format of input tensor is NCHW.");

    PADDLE_ENFORCE_LT(input_dims[2], image_dims[2],
                      "The height of input must smaller than image.");

    PADDLE_ENFORCE_LT(input_dims[3], image_dims[3],
                      "The width of input must smaller than image.");
W
wanghaox 已提交
42 43 44 45 46 47 48 49

    auto min_sizes = ctx->Attrs().Get<std::vector<int>>("min_sizes");
    auto max_sizes = ctx->Attrs().Get<std::vector<int>>("max_sizes");
    auto variances = ctx->Attrs().Get<std::vector<float>>("variances");
    auto input_aspect_ratio =
        ctx->Attrs().Get<std::vector<float>>("aspect_ratios");
    bool flip = ctx->Attrs().Get<bool>("flip");

W
wanghaox 已提交
50 51
    PADDLE_ENFORCE_GT(min_sizes.size(), 0,
                      "Size of min_size must be at least 1.");
W
wanghaox 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    for (size_t i = 0; i < min_sizes.size(); ++i) {
      PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i);
    }

    std::vector<float> aspect_ratios;
    expand_aspect_ratios(input_aspect_ratio, flip, aspect_ratios);

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      PADDLE_ENFORCE_EQ(max_sizes.size(), min_sizes.size(),
                        "The length of min_size and max_size must be equal.");
      for (size_t i = 0; i < min_sizes.size(); ++i) {
        PADDLE_ENFORCE_GT(max_sizes[i], min_sizes[i],
                          "max_size[%d] must be greater than min_size[%d].", i,
                          i);
        num_priors += 1;
      }
    }

    if (variances.size() > 1) {
      PADDLE_ENFORCE_EQ(variances.size(), 4,
                        "Must and only provide 4 variance.");
      for (size_t i = 0; i < variances.size(); ++i) {
        PADDLE_ENFORCE_GT(variances[i], 0.0,
                          "variance[%d] must be greater than 0.", i);
      }
    } else if (variances.size() == 1) {
      PADDLE_ENFORCE_GT(variances[0], 0.0,
                        "variance[0] must be greater than 0.");
    }

    const int img_h = ctx->Attrs().Get<int>("img_h");
    PADDLE_ENFORCE_GT(img_h, 0, "img_h should be larger than 0.");
    const int img_w = ctx->Attrs().Get<int>("img_w");
    PADDLE_ENFORCE_GT(img_w, 0, "img_w should be larger than 0.");

    const float step_h = ctx->Attrs().Get<float>("step_h");
    PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0.");
    const float step_w = ctx->Attrs().Get<float>("step_w");
    PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0.");

W
wanghaox 已提交
93 94
    const int layer_height = input_dims[2];
    const int layer_width = input_dims[3];
W
wanghaox 已提交
95

96 97 98 99 100 101
    std::vector<int64_t> dim_vec(5);
    dim_vec[0] = 2;
    dim_vec[1] = layer_height;
    dim_vec[2] = layer_width;
    dim_vec[3] = num_priors;
    dim_vec[4] = 4;
W
wanghaox 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    auto output_dim = framework::make_ddim(dim_vec);
    ctx->SetOutputDim("Out", output_dim);
  }

 protected:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Image")->type()),
        ctx.device_context());
  }
};

class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  PriorBoxOpMaker(framework::OpProto* proto,
                  framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
W
wanghaox 已提交
121 122
             "(Tensor, default Tensor<float>), "
             "the input feature data of PriorBoxOp, The format is NCHW.");
W
wanghaox 已提交
123
    AddInput("Image",
W
wanghaox 已提交
124 125 126 127
             "(Tensor, default Tensor<float>), "
             "the input image data of PriorBoxOp, The format is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output prior boxes of "
128 129
              "PriorBoxOp. The format is [2, layer_height, layer_width, "
              "num_priors, 4]");
W
wanghaox 已提交
130 131 132
    AddAttr<std::vector<int>>("min_sizes", "(vector<int>) ",
                              "List of min sizes of generated prior boxes.");
    AddAttr<std::vector<int>>("max_sizes", "(vector<int>) ",
W
wanghaox 已提交
133 134
                              "List of max sizes of generated prior boxes.")
        .SetDefault({});
W
wanghaox 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    AddAttr<std::vector<float>>(
        "aspect_ratios", "(vector<float>) ",
        "List of aspect ratios of generated prior boxes.")
        .SetDefault({});
    AddAttr<std::vector<float>>(
        "variances", "(vector<float>) ",
        "List of variances to be encoded in prior boxes.")
        .SetDefault({0.1});
    AddAttr<bool>("flip", "(bool) ", "Whether to flip aspect ratios.")
        .SetDefault(true);
    AddAttr<bool>("clip", "(bool) ", "Whether to clip out-of-boundary boxes.")
        .SetDefault(true);
    AddAttr<int>("img_w", "").SetDefault(0);
    AddAttr<int>("img_h", "").SetDefault(0);
    AddAttr<float>("step_w",
                   "Prior boxes step across width, 0 for auto calculation.")
        .SetDefault(0.0);
    AddAttr<float>("step_h",
                   "Prior boxes step across height, 0 for auto calculation.")
        .SetDefault(0.0);
    AddAttr<float>("offset",
                   "(float) "
                   "Prior boxes center offset.")
        .SetDefault(0.5);
    AddComment(R"DOC(
Prior box operator
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Please get more information from the following papers:
https://arxiv.org/abs/1512.02325.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker);
REGISTER_OP_CPU_KERNEL(
    prior_box, ops::PriorBoxOpKernel<paddle::platform::CPUPlace, float>,
    ops::PriorBoxOpKernel<paddle::platform::CPUPlace, double>);