test_efficientnet.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17 18
import sys
import time
19
import unittest
20

21 22
import cinn
import numpy as np
23 24 25 26 27
from cinn import Target, ir, lang, runtime
from cinn.common import *
from cinn.framework import *
from cinn.frontend import *

28 29
import paddle
from paddle import fluid
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

enable_gpu = sys.argv.pop()
model_dir = sys.argv.pop()


class TestLoadEfficientNetModel(unittest.TestCase):
    def setUp(self):
        if enable_gpu == "ON":
            self.target = DefaultNVGPUTarget()
        else:
            self.target = DefaultHostTarget()
        self.model_dir = model_dir
        self.x_shape = [1, 3, 224, 224]
        self.target_tensor = 'save_infer_model/scale_0'
        self.input_tensor = 'image'

    def get_paddle_inference_result(self, model_dir, data):
47 48 49
        config = fluid.core.AnalysisConfig(
            model_dir + '/__model__', model_dir + '/params'
        )
50 51 52 53 54 55
        config.disable_gpu()
        config.switch_ir_optim(False)
        self.paddle_predictor = fluid.core.create_paddle_predictor(config)
        data = fluid.core.PaddleTensor(data)
        results = self.paddle_predictor.run([data])
        get_tensor = self.paddle_predictor.get_output_tensor(
56 57
            self.target_tensor
        ).copy_to_cpu()
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        return get_tensor

    def apply_test(self):
        start = time.time()
        x_data = np.random.random(self.x_shape).astype("float32")
        self.executor = Interpreter([self.input_tensor], [self.x_shape])
        print("self.mode_dir is:", self.model_dir)
        # True means load combined model
        self.executor.load_paddle_model(self.model_dir, self.target, True)
        end1 = time.time()
        print("load_paddle_model time is: %.3f sec" % (end1 - start))
        a_t = self.executor.get_tensor(self.input_tensor)
        a_t.from_numpy(x_data, self.target)
        out = self.executor.get_tensor(self.target_tensor)
        out.from_numpy(np.zeros(out.shape(), dtype='float32'), self.target)
        for i in range(10):
            self.executor.run()

        repeat = 10
        end4 = time.perf_counter()
        for i in range(repeat):
            self.executor.run()
        end5 = time.perf_counter()

82 83 84 85
        print(
            "Repeat %d times, average Executor.run() time is: %.3f ms"
            % (repeat, (end5 - end4) * 1000 / repeat)
        )
86 87 88 89 90
        a_t.from_numpy(x_data, self.target)
        out.from_numpy(np.zeros(out.shape(), dtype='float32'), self.target)
        self.executor.run()

        out = out.numpy(self.target)
91
        target_result = self.get_paddle_inference_result(self.model_dir, x_data)
92 93 94 95 96 97

        print("result in test_model: \n")
        out = out.reshape(-1)
        target_result = target_result.reshape(-1)
        for i in range(0, min(out.shape[0], 200)):
            if np.abs(out[i] - target_result[i]) > 1e-3:
98 99 100 101 102 103 104 105 106 107
                print(
                    "Error! ",
                    i,
                    "-th data has diff with target data:\n",
                    out[i],
                    " vs: ",
                    target_result[i],
                    ". Diff is: ",
                    out[i] - target_result[i],
                )
108
        np.testing.assert_allclose(out, target_result, atol=1e-3)
109 110 111

    def test_model(self):
        self.apply_test()
112 113
        # self.target.arch = Target.Arch.NVGPU
        # self.apply_test()
114 115 116 117


if __name__ == "__main__":
    unittest.main()