interpolate_op.cc 17.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

K
Kaipeng Deng 已提交
23 24 25 26 27 28 29 30 31
static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

  PADDLE_ENFORCE(
      "bilinear" == interp_method || "nearest" == interp_method,
      "Interpolation method can only be \"bilinear\" or \"nearest\" when "
      "Input(X) dimension is 4");

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
        inputs_name.size(), 2,
        "Input(SizeTensor)'size of Op(interpolate) must be 2. "
        "Attr(out_shape)'s length must be 2 for 4-D input tensor.");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));

    return;
  }

K
Kaipeng Deng 已提交
47
  int out_h, out_w;
48 49 50 51 52 53
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(scale_tensor.size(), 1,
                      "Scale's dimension size must be 1.");
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
54
  } else {
55 56 57 58 59 60 61 62 63 64 65 66
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
      out_h = static_cast<int>(dim_x[2] * scale);
      out_w = static_cast<int>(dim_x[3] * scale);
      // protect when input shape is -1
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                      "OutSize's dimension size must be 1");
    PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
    ctx->ShareLoD("X", "Out");
    return;
  }

  std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
  ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
}

static void Interpolate3DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

  PADDLE_ENFORCE("trilinear" == interp_method,
                 "Interpolation method can only be \"trilinear\" when Input(X) "
                 "dimension is 5");

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
        inputs_name.size(), 3,
        "Input(SizeTensor)'s size of Op(interpolate) must be 3. "
        "Attr(out_shape)'s length must be 3 for 5-D input tensor.");
    int out_d = ctx->Attrs().Get<int>("out_d");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_d, out_h, out_w});
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));

    return;
  }

K
Kaipeng Deng 已提交
106
  int out_d, out_h, out_w;
107 108 109 110 111 112 113
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(scale_tensor.size(), 1,
                      "Scale's dimension size must be 1");
    out_d = -1;
    out_h = -1;
    out_w = -1;
K
Kaipeng Deng 已提交
114
  } else {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    float scale = ctx->Attrs().Get<float>("scale");
    if (scale > 0) {
      // round down
      out_d = static_cast<int>(dim_x[2] * scale);
      out_h = static_cast<int>(dim_x[3] * scale);
      out_w = static_cast<int>(dim_x[4] * scale);
      // protect when input shape is -1
      out_d = out_d > 0 ? out_d : -1;
      out_h = out_h > 0 ? out_h : -1;
      out_w = out_w > 0 ? out_w : -1;
    } else {
      out_d = ctx->Attrs().Get<int>("out_d");
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
K
Kaipeng Deng 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                      "OutSize's dimension size must be 1");
    PADDLE_ENFORCE_EQ(out_size_dim[0], 3, "OutSize's dim[0] must be 3");
    ctx->ShareLoD("X", "Out");
    return;
  }

  std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_d, out_h, out_w});
  ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
}

145
class InterpolateOp : public framework::OperatorWithKernel {
146 147 148 149 150 151
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
152
                   "Input(X) of InterpolateOp should not be null.");
153
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
154 155
                   "Output(Out) of InterpolationOp should not be null.");

156
    auto dim_x = ctx->GetInputDim("X");  // NCHW format
K
Kaipeng Deng 已提交
157 158 159 160 161 162 163 164 165
    PADDLE_ENFORCE(dim_x.size() == 4 || dim_x.size() == 5,
                   "Input(X) dimension must be 4 or 5");

    if (dim_x.size() == 4) {
      // shape check for 2D interpolate for input tensor shape NCHW
      Interpolate2DInferShapeCheck(ctx);
    } else {  // dim_x.size() == 5
      // shape check for 3D interpolate for input tensor shape NCDHW
      Interpolate3DInferShapeCheck(ctx);
166 167 168 169 170 171
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
172 173
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
174
  }
175 176 177 178 179 180 181 182 183 184

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
185 186
};

187
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
188 189 190
 public:
  void Make() override {
    AddInput("X",
191
             "The input tensor of interpolate operator, "
K
Kaipeng Deng 已提交
192 193
             "This is a 4-D tensor with shape of [N, C, H, W] or a "
             "5-D tensor with shape of [N, C, D, H, W].");
194
    AddInput("OutSize",
195
             "This is a 1-D tensor with two numbers to specify output size. "
K
Kaipeng Deng 已提交
196 197
             "It should be [output_height, output_width] when input is a 4-D "
             "tensor and should be [output_depth, output_height, output_width] "
198 199 200 201 202 203 204 205 206 207 208 209 210
             "when input is a 5-D tensor. It has a higher priority than "
             "the attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDispensable();
    AddInput("SizeTensor",
             "(vector<Tensor<int32>>, optional). If provided, interpolate will "
             "use this. The shape of the tensor in vector MUST BE [1]. "
             "It has the highest priority compare with Input(OutSize) and "
             "attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("Scale",
             "This is a 1-D tensor with one number to specify output scale. "
             "It has the higher priority compare with attr(scale).")
211
        .AsDispensable();
212 213
    AddOutput("Out",
              "The output tensor of interpolate operator, "
K
Kaipeng Deng 已提交
214
              "This is a tensor in same rank with Input(X).");
215

K
Kaipeng Deng 已提交
216 217 218
    AddAttr<int>("out_d", "output depth of interpolate op.").SetDefault(0);
    AddAttr<int>("out_h", "output height of interpolate op.").SetDefault(0);
    AddAttr<int>("out_w", "output width of interpolate op.").SetDefault(0);
D
dengkaipeng 已提交
219
    AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
220 221 222
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
K
Kaipeng Deng 已提交
223 224
                         "bilinear interpolation, \"trilinear\" for trilinear "
                         "interpolation and \"nearest\" for nearest "
225 226
                         "neighbor interpolation.")
        .SetDefault("bilinear");
227 228
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
229
        "an optional bool. Defaults to True. "
230 231
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
232
        "If False, are not aligned")
233 234
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
235
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
236 237
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
238
        .SetDefault(1);
239
    AddComment(R"DOC(
240 241 242 243 244
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

245
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
246
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
247 248
          direction) on input tensor.
            
249 250 251 252 253 254
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

K
Kaipeng Deng 已提交
255 256 257 258 259
          Trilinear interpolation is an extension of linear interpolation for 
          interpolating functions of three variables (e.g. D-direction, 
          H-direction and W-direction in this op) on a rectilinear 3D grid. 
          The linear interpolation is performed on three directions.

T
tink2123 已提交
260
          Align_corners and align_mode are optinal parameters,the calculation method 
261 262 263 264
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
265
          For scale:
266 267 268 269 270 271 272 273 274 275 276 277
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
278
          if:
279 280 281 282 283 284 285 286
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
287
          else:
288 289 290 291 292 293 294 295 296 297
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
298
          if:
299 300 301 302 303 304 305 306 307
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
308
          else:
309 310 311 312 313 314 315
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

K
Kaipeng Deng 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
          Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
337 338
          

339
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
340
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
341 342 343

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
K
Kaipeng Deng 已提交
344 345 346

          For details of trilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Trilinear_interpolation
347 348 349 350
         )DOC");
  }
};

351
class InterpolateOpGrad : public framework::OperatorWithKernel {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
368 369 370
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
371
  }
372 373 374 375 376 377 378 379 380 381

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
382 383
};

S
sneaxiy 已提交
384 385 386 387 388 389 390 391 392
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("X", Input("X"));
393 394 395
    if (ForwardOp().Inputs().count("SizeTensor") > 0) {
      op->SetInput("SizeTensor", Input("SizeTensor"));
    }
S
sneaxiy 已提交
396 397 398
    if (ForwardOp().Inputs().count("OutSize") > 0) {
      op->SetInput("OutSize", Input("OutSize"));
    }
399 400 401
    if (ForwardOp().Inputs().count("Scale") > 0) {
      op->SetInput("Scale", Input("Scale"));
    }
S
sneaxiy 已提交
402 403 404 405 406 407 408 409 410 411
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
                                      "X");

412 413 414 415
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
416
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
417 418 419
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
420
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
421 422 423
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
K
Kaipeng Deng 已提交
424 425 426 427
REGISTER_OPERATOR(trilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(trilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
428 429 430 431 432 433
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
434 435
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
436
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
437
                       ops::InterpolateGradKernel<double>);
K
Kaipeng Deng 已提交
438 439 440 441 442
REGISTER_OP_CPU_KERNEL(trilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(trilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);