lstsq_kernel.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
16
#include <cmath>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
#include <complex>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/impl/lstsq_kernel_impl.h"
#include "paddle/phi/kernels/lstsq_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"

namespace phi {

enum class LapackDriverType : int { Gels, Gelsd, Gelsy, Gelss };

template <typename T, typename Context>
void LstsqKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const Scalar& rcond_scaler,
                 const std::string& driver_string,
                 DenseTensor* solution,
                 DenseTensor* residuals,
                 DenseTensor* rank,
                 DenseTensor* singular_values) {
  using ValueType = phi::dtype::Real<T>;

  static auto driver_type = std::unordered_map<std::string, LapackDriverType>(
      {{"gels", LapackDriverType::Gels},
       {"gelsy", LapackDriverType::Gelsy},
       {"gelsd", LapackDriverType::Gelsd},
       {"gelss", LapackDriverType::Gelss}});
  auto driver = driver_type[driver_string];
  T rcond = rcond_scaler.to<T>();

  auto x_dims = x.dims();
  auto y_dims = y.dims();
  int dim_size = x_dims.size();
  int x_stride = phi::GetMatrixStride(x_dims);
  int y_stride = phi::GetMatrixStride(y_dims);
  int batch_count = phi::GetBatchCount(x_dims);
  auto solution_dim = solution->dims();
  int ori_solu_stride = phi::GetMatrixStride(solution_dim);
  int max_solu_stride = std::max(y_stride, ori_solu_stride);
  int min_solu_stride = std::min(y_stride, ori_solu_stride);

  // lapack is a column-major storge, transpose make the input to
  // have a continuous memory layout
  int info = 0;
66 67 68
  int m = static_cast<int>(x_dims[dim_size - 2]);
  int n = static_cast<int>(x_dims[dim_size - 1]);
  int nrhs = static_cast<int>(y_dims[dim_size - 1]);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  int lda = std::max<int>(m, 1);
  int ldb = std::max<int>(1, std::max(m, n));

  DenseTensor* new_x = new DenseTensor();
  new_x->Resize(phi::make_ddim({batch_count, m, n}));
  dev_ctx.template Alloc<T>(new_x);
  phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), true, new_x);

  solution->Resize(phi::make_ddim({batch_count, std::max(m, n), nrhs}));
  dev_ctx.template Alloc<T>(solution);

  if (m >= n) {
    phi::Copy<Context>(dev_ctx, y, dev_ctx.GetPlace(), true, solution);
  } else {
    auto* solu_data = solution->data<T>();
    auto* y_data = y.data<T>();
    for (auto i = 0; i < batch_count; i++) {
      for (auto j = 0; j < min_solu_stride; j++) {
        solu_data[i * max_solu_stride + j] = y_data[i * y_stride + j];
      }
    }
  }

  DenseTensor input_x_trans = phi::TransposeLast2Dim<T>(dev_ctx, *new_x);
  DenseTensor input_y_trans = phi::TransposeLast2Dim<T>(dev_ctx, *solution);
  phi::Copy<Context>(dev_ctx, input_x_trans, dev_ctx.GetPlace(), true, new_x);
  phi::Copy<Context>(
      dev_ctx, input_y_trans, dev_ctx.GetPlace(), true, solution);

  auto* x_vector = new_x->data<T>();
  auto* y_vector = solution->data<T>();

  // "gels" divers does not need to compute rank
  int rank_32 = 0;
  int* rank_data = nullptr;
  int* rank_working_ptr = nullptr;
  if (driver != LapackDriverType::Gels) {
    rank_data = dev_ctx.template Alloc<int>(rank);
    rank_working_ptr = rank_data;
  }

  // "gelsd" and "gelss" divers need to compute singular values
  ValueType* s_data = nullptr;
  ValueType* s_working_ptr = nullptr;
  int s_stride = 0;
  if (driver == LapackDriverType::Gelsd || driver == LapackDriverType::Gelss) {
    s_data = dev_ctx.template Alloc<T>(singular_values);
    s_working_ptr = s_data;
    auto s_dims = singular_values->dims();
118
    s_stride = static_cast<int>(s_dims[s_dims.size() - 1]);
119 120 121 122 123 124 125 126 127 128 129 130
  }

  // "jpvt" is only used for "gelsy" driver
  DenseTensor* jpvt = new DenseTensor();
  int* jpvt_data = nullptr;
  if (driver == LapackDriverType::Gelsy) {
    jpvt->Resize(phi::make_ddim({std::max<int>(1, n)}));
    jpvt_data = dev_ctx.template Alloc<int>(jpvt);
  }

  // run once the driver, first to get the optimal workspace size
  int lwork = -1;
131
  T wkopt = 0.0;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  ValueType rwkopt;
  int iwkopt = 0;

  if (driver == LapackDriverType::Gels) {
    phi::funcs::lapackGels(
        'N', m, n, nrhs, x_vector, lda, y_vector, ldb, &wkopt, lwork, &info);
  } else if (driver == LapackDriverType::Gelsd) {
    phi::funcs::lapackGelsd(m,
                            n,
                            nrhs,
                            x_vector,
                            lda,
                            y_vector,
                            ldb,
                            s_working_ptr,
                            static_cast<ValueType>(rcond),
                            &rank_32,
                            &wkopt,
                            lwork,
                            &rwkopt,
                            &iwkopt,
                            &info);
  } else if (driver == LapackDriverType::Gelsy) {
    phi::funcs::lapackGelsy(m,
                            n,
                            nrhs,
                            x_vector,
                            lda,
                            y_vector,
                            ldb,
                            jpvt_data,
                            static_cast<ValueType>(rcond),
                            &rank_32,
                            &wkopt,
                            lwork,
                            &rwkopt,
                            &info);
  } else if (driver == LapackDriverType::Gelss) {
    phi::funcs::lapackGelss(m,
                            n,
                            nrhs,
                            x_vector,
                            lda,
                            y_vector,
                            ldb,
                            s_working_ptr,
                            static_cast<ValueType>(rcond),
                            &rank_32,
                            &wkopt,
                            lwork,
                            &rwkopt,
                            &info);
  }

  lwork = std::max<int>(1, static_cast<int>(phi::dtype::Real<T>(wkopt)));
  DenseTensor* work = new DenseTensor();
  work->Resize(phi::make_ddim({lwork}));
  T* work_data = dev_ctx.template Alloc<T>(work);

  // "rwork" only used for complex inputs and "gelsy/gelsd/gelss" drivers
  DenseTensor* rwork = new DenseTensor();
  ValueType* rwork_data = nullptr;
  if (IsComplexDtype(x.dtype()) && driver != LapackDriverType::Gels) {
    int rwork_len = 0;
    if (driver == LapackDriverType::Gelsy) {
      rwork_len = std::max<int>(1, 2 * n);
    } else if (driver == LapackDriverType::Gelss) {
      rwork_len = std::max<int>(1, 5 * std::min(m, n));
    } else if (driver == LapackDriverType::Gelsd) {
      rwork_len = std::max<int>(1, rwkopt);
    }
    rwork->Resize(phi::make_ddim({rwork_len}));
    rwork_data = dev_ctx.template Alloc<ValueType>(rwork);
  }

  // "iwork" workspace array is relavant only for "gelsd" driver
  DenseTensor* iwork = new DenseTensor();
  int* iwork_data = nullptr;
  if (driver == LapackDriverType::Gelsd) {
    iwork->Resize(phi::make_ddim({std::max<int>(1, iwkopt)}));
    iwork_data = dev_ctx.template Alloc<int>(iwork);
  }

  for (auto i = 0; i < batch_count; ++i) {
    auto* x_input = &x_vector[i * x_stride];
    auto* y_input = &y_vector[i * max_solu_stride];
    rank_working_ptr = rank_working_ptr ? &rank_data[i] : nullptr;
    s_working_ptr = s_working_ptr ? &s_data[i * s_stride] : nullptr;

    if (driver == LapackDriverType::Gels) {
      phi::funcs::lapackGels(
          'N', m, n, nrhs, x_input, lda, y_input, ldb, work_data, lwork, &info);
    } else if (driver == LapackDriverType::Gelsd) {
      phi::funcs::lapackGelsd(m,
                              n,
                              nrhs,
                              x_input,
                              lda,
                              y_input,
                              ldb,
                              s_working_ptr,
                              static_cast<ValueType>(rcond),
                              &rank_32,
                              work_data,
                              lwork,
                              rwork_data,
                              iwork_data,
                              &info);
    } else if (driver == LapackDriverType::Gelsy) {
      phi::funcs::lapackGelsy(m,
                              n,
                              nrhs,
                              x_input,
                              lda,
                              y_input,
                              ldb,
                              jpvt_data,
                              static_cast<ValueType>(rcond),
                              &rank_32,
                              work_data,
                              lwork,
                              rwork_data,
                              &info);
    } else if (driver == LapackDriverType::Gelss) {
      phi::funcs::lapackGelss(m,
                              n,
                              nrhs,
                              x_input,
                              lda,
                              y_input,
                              ldb,
                              s_working_ptr,
                              static_cast<ValueType>(rcond),
                              &rank_32,
                              work_data,
                              lwork,
                              rwork_data,
                              &info);
    }

    PADDLE_ENFORCE_EQ(
        info,
        0,
        phi::errors::PreconditionNotMet(
            "For batch [%d]: Lapack info is not zero but [%d]", i, info));

    if (rank_working_ptr) *rank_working_ptr = static_cast<int>(rank_32);
  }

  DenseTensor tmp_s = phi::TransposeLast2Dim<T>(dev_ctx, *solution);
  phi::Copy<Context>(dev_ctx, tmp_s, dev_ctx.GetPlace(), true, solution);

  if (m > n) {
    auto* solu_data = solution->data<T>();
    for (auto i = 1; i < batch_count; i++) {
      for (auto j = 0; j < min_solu_stride; j++) {
        solu_data[i * min_solu_stride + j] = solu_data[i * max_solu_stride + j];
      }
    }
  }

  if (batch_count > 1) {
    solution->Resize(solution_dim);
  } else {
    solution->Resize(phi::make_ddim({n, nrhs}));
  }

  GetResidualsTensor<Context, T>(dev_ctx, x, y, solution, residuals);
}

}  // namespace phi

304 305 306
PD_REGISTER_KERNEL(lstsq, CPU, ALL_LAYOUT, phi::LstsqKernel, float, double) {
  kernel->OutputAt(2).SetDataType(phi::DataType::INT32);
}