conv_kernel.cc 7.6 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
17
#include "paddle/phi/core/tensor_utils.h"
18
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
19
#include "paddle/phi/kernels/funcs/blas/blas.h"
20
#include "paddle/phi/kernels/sparse/cpu/conv.h"
Z
zhangkaihuo 已提交
21 22 23 24 25 26 27 28

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
29
 **/
30
template <typename T, typename IntT = int>
Z
zhangkaihuo 已提交
31 32 33 34 35 36 37 38
void Conv3dCooCPUKernel(const CPUContext& dev_ctx,
                        const SparseCooTensor& x,
                        const DenseTensor& kernel,
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const int groups,
                        const bool subm,
39
                        const std::string& key,
Z
zhangkaihuo 已提交
40
                        SparseCooTensor* out,
41 42
                        DenseTensor* rulebook,
                        DenseTensor* counter) {
Z
zhangkaihuo 已提交
43 44 45 46 47 48 49 50
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
Z
zhangkaihuo 已提交
51 52 53 54 55
  std::vector<int> kernel_sizes(kernel_dims.size());
  for (int i = 0; i < kernel_dims.size(); i++) {
    kernel_sizes[i] = kernel_dims[i];
  }

56 57
  std::vector<int> subm_paddings(paddings), subm_strides(strides);
  if (subm) {
58 59
    // the out shape of subm_conv is same as input shape
    // reset the padding=kernel_size/2 and strides=1
60 61 62
    phi::funcs::sparse::ResetSubmKernelSizeAndStrides(
        kernel.dims(), &subm_paddings, &subm_strides);
  }
63 64 65 66 67 68

  phi::funcs::sparse::GetOutShape(
      x_dims, kernel_sizes, subm_paddings, dilations, subm_strides, &out_dims);
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

Z
zhangkaihuo 已提交
69 70 71
  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  DenseTensor h_counter, h_offsets;
  h_counter.Resize({kernel_size});
  h_offsets.Resize({kernel_size + 1});
  int* h_counter_ptr = dev_ctx.template HostAlloc<int>(&h_counter);
  int* h_offsets_ptr = dev_ctx.template HostAlloc<int>(&h_offsets);

  // DenseTensor* rulebook = nullptr;
  const IntT* rulebook_ptr = nullptr;
  int n = 0;
  bool need_product_rulebook = true;
  if (subm && !key.empty()) {
    rulebook_ptr = phi::funcs::sparse::PrepareSubm<T, IntT, CPUContext>(
        dev_ctx,
        x,
        key,
        out_dims,
        out,
        h_counter_ptr,
        h_offsets_ptr,
        &n,
        &need_product_rulebook);
  }
  if (need_product_rulebook) {
    DenseTensor tmp_rulebook;
    ProductRuleBook<T, CPUContext, IntT>(dev_ctx,
                                         x,
                                         kernel_sizes,
                                         subm_paddings,
                                         dilations,
                                         subm_strides,
                                         out_dims,
                                         subm,
                                         &tmp_rulebook,
                                         h_counter_ptr);

    UpdateRulebookAndOutIndex<T, CPUContext, IntT>(
        dev_ctx, x, kernel_size, out_channels, out_dims, &tmp_rulebook, out);
    n = tmp_rulebook.dims()[1];
    rulebook_ptr = tmp_rulebook.data<IntT>();

    phi::funcs::sparse::SaveToTable(
        dev_ctx, x, key, tmp_rulebook, h_counter, out, rulebook, counter);
  }
  // int n = rulebook->dims()[1];
Z
zhangkaihuo 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NHWC);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NHWC);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();

129
  Gather<T, IntT>(x.non_zero_elements().data<T>(),
130
                  rulebook_ptr + n,
131 132 133
                  n,
                  in_channels,
                  in_features_ptr);
Z
zhangkaihuo 已提交
134 135

  // 3. call gemm for every werght
136
  auto blas = phi::funcs::GetBlas<CPUContext, T>(dev_ctx);
Z
zhangkaihuo 已提交
137 138
  int offset = 0;
  for (int i = 0; i < kernel_size; i++) {
139 140
    h_offsets_ptr[i] = offset;
    offset += h_counter_ptr[i];
Z
zhangkaihuo 已提交
141
  }
142
  h_offsets_ptr[kernel_size] = offset;
Z
zhangkaihuo 已提交
143 144 145

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
146
    if (h_counter_ptr[i] <= 0) {
Z
zhangkaihuo 已提交
147 148 149 150
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
151
    const int M = h_counter_ptr[i];
Z
zhangkaihuo 已提交
152 153
    const int K = in_channels;   // in_channels
    const int N = out_channels;  // out_channels
154
    T* tmp_in_ptr = in_features_ptr + h_offsets_ptr[i] * in_channels;
Z
zhangkaihuo 已提交
155
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
156
    T* tmp_out_ptr = out_features_ptr + h_offsets_ptr[i] * out_channels;
Z
zhangkaihuo 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  T* out_values_ptr = out->mutable_non_zero_elements()->data<T>();
  memset(out_values_ptr, 0, sizeof(T) * out->nnz() * out_channels);
172 173
  Scatter<T, IntT>(
      out_features_ptr, rulebook_ptr + n * 2, n, out_channels, out_values_ptr);
174 175 176
}

template <typename T, typename Context>
Z
zhangkaihuo 已提交
177 178 179 180 181 182 183 184
void Conv3dCooKernel(const Context& dev_ctx,
                     const SparseCooTensor& x,
                     const DenseTensor& kernel,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     const std::vector<int>& strides,
                     const int groups,
                     const bool subm,
185
                     const std::string& key,
Z
zhangkaihuo 已提交
186
                     SparseCooTensor* out,
187 188
                     DenseTensor* rulebook,
                     DenseTensor* counter) {
189
  PD_VISIT_INTEGRAL_TYPES(
Z
zhangkaihuo 已提交
190 191 192 193 194 195 196 197 198
      x.non_zero_indices().dtype(), "Conv3dCooCPUKernel", ([&] {
        Conv3dCooCPUKernel<T, data_t>(dev_ctx,
                                      x,
                                      kernel,
                                      paddings,
                                      dilations,
                                      strides,
                                      groups,
                                      subm,
199
                                      key,
Z
zhangkaihuo 已提交
200
                                      out,
201 202
                                      rulebook,
                                      counter);
203
      }));
Z
zhangkaihuo 已提交
204 205 206 207 208 209
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(
Z
zhangkaihuo 已提交
210
    conv3d_coo, CPU, ALL_LAYOUT, phi::sparse::Conv3dCooKernel, float, double) {
Z
zhangkaihuo 已提交
211 212
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}