adadelta.py 8.0 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops
16 17

from ..fluid import framework
18
from ..fluid.dygraph import no_grad
19 20
from ..framework import in_dygraph_mode
from .optimizer import Optimizer
J
Jiawei Wang 已提交
21

22 23
__all__ = []

J
Jiawei Wang 已提交
24 25

class Adadelta(Optimizer):
26
    r"""
J
Jiawei Wang 已提交
27 28 29 30 31 32 33 34 35
    **Notes: This API does not support sparse parameter optimization.**

    Adadelta Optimizer. Please refer to this for details:
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:

    .. math::

36
        E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2
J
Jiawei Wang 已提交
37

38
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }
J
Jiawei Wang 已提交
39

40
        E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2
J
Jiawei Wang 已提交
41 42

    Args:
43
        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
J
Jiawei Wang 已提交
44 45 46
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
47
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
48 49 50 51
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
J
Jiawei Wang 已提交
52 53
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
54 55 56 57 58
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
59
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
60 61 62 63 64 65 66 67 68 69
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
70

J
Jiawei Wang 已提交
71
            import paddle
72 73

            inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
J
Jiawei Wang 已提交
74 75 76 77 78 79 80 81 82 83
            linear = paddle.nn.Linear(10, 10)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            adadelta.step()
            adadelta.clear_grad()

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adadelta = paddle.optimizer.Adadelta(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                }],
100
                weight_decay=0.01)
101 102 103 104
            out.backward()
            adadelta.step()
            adadelta.clear_grad()

J
Jiawei Wang 已提交
105 106 107 108 109
    """

    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate=0.001,
        epsilon=1.0e-6,
        rho=0.95,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
J
Jiawei Wang 已提交
120 121 122 123 124 125
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
126
        super().__init__(
127 128 129 130 131 132
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )
J
Jiawei Wang 已提交
133 134 135
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho
136 137 138 139
        self._default_dict = {
            'epsilon': epsilon,
            'rho': rho,
        }
J
Jiawei Wang 已提交
140 141 142 143

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
144 145
        if isinstance(parameters, dict):
            parameters = parameters.get('params')
J
Jiawei Wang 已提交
146 147 148 149 150 151

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
152 153 154
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)

J
Jiawei Wang 已提交
155
        avg_squared_grad_acc = self._get_accumulator(
156 157
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
J
Jiawei Wang 已提交
158
        avg_squared_update_acc = self._get_accumulator(
159 160
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
J
Jiawei Wang 已提交
161

162 163
        if in_dygraph_mode():
            with no_grad():
164 165 166 167 168 169 170 171
                _C_ops.adadelta_(
                    param_and_grad[0],
                    param_and_grad[1],
                    avg_squared_grad_acc,
                    avg_squared_update_acc,
                    self._rho,
                    self._epsilon,
                )
172 173 174 175 176
            return None

        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

J
Jiawei Wang 已提交
177
        # Create the adadelta optimizer op
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc,
            },
            attrs={"epsilon": self._epsilon, "rho": self._rho},
            stop_gradient=True,
        )
J
Jiawei Wang 已提交
194 195

        return adadelta_op
196 197 198 199 200 201

    def _update_param_group(self, parameters):
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
        self._rho = parameters.get('rho', self._default_dict['rho'])
        parameters = parameters.get('params')
        return parameters