test_viterbi_decode_op.py 5.8 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import core
import unittest
import paddle
paddle.enable_static()


class Decoder(object):
    def __init__(self, transitions, use_tag=True):
        self.transitions = transitions
        self.use_tag = use_tag
        self.start_idx, self.stop_idx = -1, -2

    def __call__(self, inputs, length):
        bs, seq_len, n_label = inputs.shape
        inputs_t = np.transpose(inputs, (1, 0, 2))
        trans_exp = np.expand_dims(self.transitions, axis=0)
        historys = []
        left_length = np.array(length)
        max_seq_len = np.amax(left_length)
        left_length = np.expand_dims(left_length, 1)
        alpha = np.full((bs, n_label), -1e4, dtype='float32') if self.use_tag \
            else np.zeros((bs, n_label), dtype='float32')
        alpha[:, -1] = 0
        for i, logit in enumerate(inputs_t[:max_seq_len]):
            if i == 0 and not self.use_tag:
                alpha = logit
                left_length = left_length - 1
                continue
            alpha_exp = np.expand_dims(alpha, 2)
            alpha_trn_sum = alpha_exp + trans_exp
            max_res = np.amax(alpha_trn_sum, 1), np.argmax(alpha_trn_sum, 1)
            historys = historys + [max_res[1]] if i >= 1 else []
            alpha_nxt = max_res[0] + logit
            mask = (left_length > 0)
            alpha = mask * alpha_nxt + (1 - mask) * alpha
            if self.use_tag:
                alpha += (left_length == 1) * trans_exp[:, self.stop_idx]
            left_length = left_length - 1
        scores, last_ids = np.amax(alpha, 1), np.argmax(alpha, 1)
        left_length = left_length[:, 0]
        last_ids_update = last_ids * (left_length >= 0)
        batch_path = [last_ids_update]
        batch_offset = np.arange(bs) * n_label
        for hist in reversed(historys):
            left_length = left_length + 1
            gather_idx = batch_offset + last_ids
            last_ids_update = np.take(hist, gather_idx) * (left_length > 0)
            mask = (left_length == 0)
            last_ids_update = last_ids_update * (1 - mask) + last_ids * mask
            batch_path.insert(0, last_ids_update)
            last_ids = last_ids_update + (left_length < 0) * last_ids
        batch_path = np.stack(batch_path, 1)
        return scores, batch_path


class TestViterbiOp(OpTest):
    def set_attr(self):
        self.dtype = "float32" if core.is_compiled_with_rocm() else "float64"
        self.use_tag = True
        self.bz, self.len, self.ntags = 4, 8, 10

    def setUp(self):
        self.op_type = "viterbi_decode"
H
hong 已提交
77
        self.python_api = paddle.text.viterbi_decode
J
Jack Zhou 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        self.set_attr()
        bz, length, ntags = self.bz, self.len, self.ntags
        self.input = np.random.randn(bz, length, ntags).astype(self.dtype)
        self.trans = np.random.randn(ntags, ntags).astype(self.dtype)
        self.length = np.random.randint(1, length + 1, [bz]).astype('int64')
        decoder = Decoder(self.trans, self.use_tag)
        scores, path = decoder(self.input, self.length)
        self.inputs = {
            'Input': self.input,
            'Transition': self.trans,
            'Length': self.length
        }
        self.attrs = {'include_bos_eos_tag': self.use_tag, }
        self.outputs = {'Scores': scores, 'Path': path}

    def test_output(self):
H
hong 已提交
94
        self.check_output(check_eager=True)
J
Jack Zhou 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


class TestViterbiAPI(unittest.TestCase):
    def set_attr(self):
        self.use_tag = True
        self.bz, self.len, self.ntags = 4, 8, 10
        self.places = [fluid.CPUPlace(), fluid.CUDAPlace(0)]    \
            if core.is_compiled_with_cuda() else [fluid.CPUPlace()]

    def setUp(self):
        self.set_attr()
        bz, length, ntags = self.bz, self.len, self.ntags
        self.input = np.random.randn(bz, length, ntags).astype('float32')
        self.transitions = np.random.randn(ntags, ntags).astype('float32')
        self.length = np.random.randint(1, length + 1, [bz]).astype('int64')
        decoder = Decoder(self.transitions, self.use_tag)
        self.scores, self.path = decoder(self.input, self.length)

    def check_static_result(self, place):
        bz, length, ntags = self.bz, self.len, self.ntags
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            Input = fluid.data(
                name="Input", shape=[bz, length, ntags], dtype="float32")
            Transition = fluid.data(
                name="Transition", shape=[ntags, ntags], dtype="float32")
            Length = fluid.data(name="Length", shape=[bz], dtype="int64")
            decoder = paddle.text.ViterbiDecoder(Transition, self.use_tag)
            score, path = decoder(Input, Length)
            exe = fluid.Executor(place)
            feed_list = {
                "Input": self.input,
                "Transition": self.transitions,
                "Length": self.length
            }
            fetches = exe.run(feed=feed_list, fetch_list=[score, path])
            np.testing.assert_allclose(fetches[0], self.scores, rtol=1e-5)
            np.testing.assert_allclose(fetches[1], self.path)

    def test_static_net(self):
        for place in self.places:
            self.check_static_result(place)
H
hong 已提交
136 137 138 139 140


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()