spp_op.h 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sweetsky0901 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/operators/strided_memcpy.h"
S
sweetsky0901 已提交
22 23 24

namespace paddle {
namespace operators {
S
sweetsky0901 已提交
25
template <typename DeviceContext, typename T>
S
sweetsky0901 已提交
26 27 28 29 30 31
class SppKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    int pyramid_height = context.template Attr<int>("pyramid_height");
S
sweetsky0901 已提交
32 33
    std::string pooling_type =
        context.template Attr<std::string>("pooling_type");
S
sweetsky0901 已提交
34 35 36 37 38 39 40
    out->mutable_data<T>(context.GetPlace());
    auto out_stride = framework::stride(out->dims());
    int input_h = in_x->dims()[2];
    int input_w = in_x->dims()[3];
    size_t output_offset = 0;
    for (int p = 0; p < pyramid_height; ++p) {
      int bins = std::pow(2, p);
S
sweetsky0901 已提交
41 42 43 44 45 46
      int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
      int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
      int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
      int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
      std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
      std::vector<int> strides({kernel_size_h, kernel_size_w});
S
sweetsky0901 已提交
47 48
      std::vector<int> paddings({padding_h, padding_w});
      // pooling output shape
S
sweetsky0901 已提交
49
      framework::Tensor out_level;
S
sweetsky0901 已提交
50 51
      std::vector<int64_t> output_shape_vec(
          {in_x->dims()[0], in_x->dims()[1], bins, bins});
S
sweetsky0901 已提交
52 53 54
      framework::DDim output_shape(framework::make_ddim(output_shape_vec));
      out_level.mutable_data<T>(output_shape, context.GetPlace());
      // pooling
S
sweetsky0901 已提交
55 56 57 58 59 60 61 62 63 64 65
      if (pooling_type == "max") {
        math::Pool2dFunctor<DeviceContext, math::MaxPool<T>, T> pool_forward;
        math::MaxPool<T> max_process;
        pool_forward(context.template device_context<DeviceContext>(), *in_x,
                     kernel_size, strides, paddings, max_process, &out_level);
      } else if (pooling_type == "avg") {
        math::Pool2dFunctor<DeviceContext, math::AvgPool<T>, T> pool_forward;
        math::AvgPool<T> avg_process;
        pool_forward(context.template device_context<DeviceContext>(), *in_x,
                     kernel_size, strides, paddings, avg_process, &out_level);
      }
S
sweetsky0901 已提交
66 67 68 69 70 71
      // flatten pooling output shape
      int output_flatten_w = in_x->dims()[1] * bins * bins;
      std::vector<int64_t> output_flatten_shape_vec(
          {in_x->dims()[0], output_flatten_w});
      framework::DDim output_flatten_shape(
          framework::make_ddim(output_flatten_shape_vec));
S
sweetsky0901 已提交
72
      out_level.Resize(output_flatten_shape);
S
sweetsky0901 已提交
73
      // concat
S
sweetsky0901 已提交
74 75 76
      auto out_level_stride = framework::stride(out_level.dims());
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
                       out_level.data<T>(), out_level_stride, out_level.dims(),
S
sweetsky0901 已提交
77
                       out_stride, out->data<T>() + output_offset);
S
sweetsky0901 已提交
78
      output_offset += out_level.dims()[1] * out_level_stride[1];
S
sweetsky0901 已提交
79 80 81
    }
  }
};
S
sweetsky0901 已提交
82
template <typename DeviceContext, typename T>
S
sweetsky0901 已提交
83 84 85 86 87 88 89 90 91
class SppGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
    const framework::Tensor* out = context.Input<framework::Tensor>("Out");
    const framework::Tensor* out_grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    framework::Tensor* in_x_grad =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
S
sweetsky0901 已提交
92
    int pyramid_height = context.template Attr<int>("pyramid_height");
S
sweetsky0901 已提交
93 94
    std::string pooling_type =
        context.template Attr<std::string>("pooling_type");
S
sweetsky0901 已提交
95 96
    auto& device_ctx = context.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
S
sweetsky0901 已提交
97 98 99 100 101 102 103 104
    in_x_grad->mutable_data<T>(context.GetPlace());
    zero(device_ctx, in_x_grad, static_cast<T>(0));
    auto out_stride = framework::stride(out->dims());
    int input_h = in_x->dims()[2];
    int input_w = in_x->dims()[3];
    size_t out_offset = 0;
    for (int p = 0; p < pyramid_height; ++p) {
      int bins = std::pow(2, p);
S
sweetsky0901 已提交
105 106 107 108 109 110
      int kernel_size_h = std::ceil(input_h / static_cast<double>(bins));
      int kernel_size_w = std::ceil(input_w / static_cast<double>(bins));
      int padding_h = (kernel_size_h * bins - input_h + 1) / 2;
      int padding_w = (kernel_size_w * bins - input_w + 1) / 2;
      std::vector<int> kernel_size({kernel_size_h, kernel_size_w});
      std::vector<int> strides({kernel_size_h, kernel_size_w});
S
sweetsky0901 已提交
111
      std::vector<int> paddings({padding_h, padding_w});
S
sweetsky0901 已提交
112
      // split out and outgrad  ...  to flatten
S
sweetsky0901 已提交
113 114
      framework::Tensor out_level;
      framework::Tensor outgrad_level;
S
sweetsky0901 已提交
115 116 117 118 119
      int out_flatten_w = in_x->dims()[1] * bins * bins;
      std::vector<int64_t> out_flatten_shape_vec(
          {in_x->dims()[0], out_flatten_w});
      framework::DDim out_flatten_shape(
          framework::make_ddim(out_flatten_shape_vec));
S
sweetsky0901 已提交
120 121 122
      out_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
      outgrad_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
      auto flatten_stride = framework::stride(out_level.dims());
S
sweetsky0901 已提交
123
      // memcpy
S
sweetsky0901 已提交
124 125 126
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
                       out->data<T>() + out_offset, out_stride,
                       out_level.dims(), flatten_stride, out_level.data<T>());
S
sweetsky0901 已提交
127

S
sweetsky0901 已提交
128
      StridedMemcpy<T>(context.template device_context<DeviceContext>(),
S
sweetsky0901 已提交
129
                       out_grad->data<T>() + out_offset, out_stride,
S
sweetsky0901 已提交
130 131 132
                       outgrad_level.dims(), flatten_stride,
                       outgrad_level.data<T>());
      out_offset += out_level.dims()[1] * out_stride[1];
S
sweetsky0901 已提交
133
      // flatten backward to nchw
S
sweetsky0901 已提交
134

S
sweetsky0901 已提交
135
      std::vector<int64_t> out_shape_vec({in_x->dims()[0], in_x->dims()[1]});
S
sweetsky0901 已提交
136 137 138 139
      out_shape_vec.push_back(
          (input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1);
      out_shape_vec.push_back(
          (input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1);
S
sweetsky0901 已提交
140
      framework::DDim out_shape(framework::make_ddim(out_shape_vec));
S
sweetsky0901 已提交
141
      out_level.ShareDataWith(out_level);
S
sweetsky0901 已提交
142
      out_level.Resize(out_shape);
S
sweetsky0901 已提交
143
      outgrad_level.ShareDataWith(outgrad_level);
S
sweetsky0901 已提交
144
      outgrad_level.Resize(out_shape);
S
sweetsky0901 已提交
145
      // pooling backward
S
sweetsky0901 已提交
146 147 148 149 150 151 152 153 154 155
      if (pooling_type == "max") {
        math::MaxPool2dGradFunctor<DeviceContext, T> pool2d_backward;
        pool2d_backward(context.template device_context<DeviceContext>(), *in_x,
                        *&out_level, *&outgrad_level, kernel_size, strides,
                        paddings, in_x_grad);
      } else if (pooling_type == "avg") {
        math::Pool2dGradFunctor<DeviceContext, math::AvgPoolGrad<T>, T>
            pool_backward;
        math::AvgPoolGrad<T> avg_process;
        pool_backward(context.template device_context<DeviceContext>(), *in_x,
S
sweetsky0901 已提交
156
                      *&out_level, *&outgrad_level, kernel_size, strides,
S
sweetsky0901 已提交
157 158
                      paddings, avg_process, in_x_grad);
      }
S
sweetsky0901 已提交
159 160 161 162 163
    }
  }
};
}  // namespace operators
}  // namespace paddle