fc_op.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_op.h"
16
#include <vector>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/blas.h"
18
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
19

20 21 22 23 24 25 26 27 28 29
namespace paddle {
namespace operators {

void FCOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Input"),
                 "X(Input) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("W"),
                 "W(Input) of Fully Connected should not be null.");
T
Tao Luo 已提交
30

31 32 33
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

T
tensor-tang 已提交
34 35
  if (ctx->HasInput("Bias")) {
    auto bias_dims = ctx->GetInputDim("Bias");
36 37 38 39 40 41 42 43
    if (bias_dims.size() == 2) {
      PADDLE_ENFORCE_EQ(bias_dims[0], 1, "The shape of Bias must be [1, dim].");
      PADDLE_ENFORCE_EQ(bias_dims[1], w_dims[1],
                        "The shape of Bias must be [1, dim].");
    } else if (bias_dims.size() == 1) {
      PADDLE_ENFORCE_EQ(bias_dims[0], w_dims[1],
                        "The shape of Bias must be [1, dim].");
    }
T
tensor-tang 已提交
44
  }
T
Tao Luo 已提交
45 46 47 48 49

  if (ctx->Attrs().Get<bool>("use_mkldnn")) {
    PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
                   "Fully Connected input should be 2-D or 4-D tensor.");
  }
T
tensor-tang 已提交
50 51
  PADDLE_ENFORCE_EQ(w_dims.size(), 2UL,
                    "Fully Connected input should be 2-D tensor.");
T
Tao Luo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
  PADDLE_ENFORCE_GT(
      in_dims.size(), in_num_col_dims,
      "The input tensor Input's rank of FCOp should be larger than "
      "in_num_col_dims.");

  auto in_mat_dims = framework::flatten_to_2d(in_dims, in_num_col_dims);
  PADDLE_ENFORCE_EQ(
      in_mat_dims[1], w_dims[0],
      "Fully Connected input and weigth size do not match. %s, %s");

  std::vector<int64_t> output_dims;
  output_dims.reserve(static_cast<size_t>(in_num_col_dims + 1));
  for (int i = 0; i < in_num_col_dims; ++i) {
    output_dims.push_back(in_dims[i]);
  }
  output_dims.push_back(w_dims[1]);
T
tensor-tang 已提交
69

T
Tao Luo 已提交
70
  ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
71 72 73 74 75
  ctx->ShareLoD("Input", "Out");
}

framework::OpKernelType FCOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
76 77
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
78
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
79 80 81
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout, library);
}

void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
  }
T
tensor-tang 已提交
97 98

  if (ctx->HasInput("Bias")) {
T
tensor-tang 已提交
99 100
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                   "Should have bias grad");
T
tensor-tang 已提交
101 102 103
    auto bias_dims = ctx->GetInputDim("Bias");
    ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
  }
104 105 106 107
}

framework::OpKernelType FCOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
108 109
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
110
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
111 112 113
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
114 115 116 117 118
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout, library);
}

Y
Yu Yang 已提交
119
void FCOpMaker::Make() {
T
Tao Luo 已提交
120
  AddInput("Input", "(Tensor), The input tensor of fully connected operator.");
T
tensor-tang 已提交
121 122
  AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
  AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
T
tensor-tang 已提交
123
      .AsDispensable();
T
Tao Luo 已提交
124
  AddAttr<int>("in_num_col_dims",
T
Tao Luo 已提交
125 126 127 128
               "(int, default 1), The fc op can take tensors with more than "
               "two dimensions as its inputs.")
      .SetDefault(1)
      .EqualGreaterThan(1);
129
  AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
130 131 132 133 134 135
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddComment(R"DOC(
  Fully Connected Operator.

136
  The fully connected operation calculates the output based on the input, weights and bias.
137 138 139 140
  The size of each dimension of the parameters checked in the infer-shape.
)DOC");
}

T
tensor-tang 已提交
141 142 143 144
template <typename T>
class FCOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
145
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
T
tensor-tang 已提交
146 147 148
                   "It must use CPUPlace.");
    auto input = ctx.Input<Tensor>("Input");
    auto w = ctx.Input<Tensor>("W");
T
tensor-tang 已提交
149
    auto bias = ctx.Input<Tensor>("Bias");
T
tensor-tang 已提交
150
    auto output = ctx.Output<Tensor>("Out");
T
tensor-tang 已提交
151 152
    auto in_dims = input->dims();
    auto w_dims = w->dims();
T
Tao Luo 已提交
153 154
    auto out_dims = output->dims();
    int M = framework::product(out_dims) / out_dims[out_dims.size() - 1];
T
tensor-tang 已提交
155 156 157 158

    const T* input_data = input->data<T>();
    const T* w_data = w->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
159 160
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    math::FCCompute<platform::CPUDeviceContext, T>(
T
Tao Luo 已提交
161
        blas, M, w_dims[1], w_dims[0], input_data, w_data, output_data,
162
        bias ? bias->data<T>() : NULL);
T
tensor-tang 已提交
163 164

    // TODO(TJ): fuse act
T
tensor-tang 已提交
165 166 167
  }
};

168 169 170
}  // namespace operators
}  // namespace paddle

T
tensor-tang 已提交
171 172
namespace ops = paddle::operators;
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
173
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
174
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
T
tensor-tang 已提交
175
REGISTER_OP_CPU_KERNEL(fc, ops::FCOpKernel<float>, ops::FCOpKernel<double>);