test_bitwise_op.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
姜永久 已提交
18
from eager_op_test import OpTest
19

20 21
import paddle

22 23 24
paddle.enable_static()


25
# ----------------- TEST OP: BitwiseAnd ----------------- #
26 27 28
class TestBitwiseAnd(OpTest):
    def setUp(self):
        self.op_type = "bitwise_and"
姜永久 已提交
29
        self.python_api = paddle.tensor.logic.bitwise_and
30 31 32 33
        self.init_dtype()
        self.init_shape()
        self.init_bound()

34 35 36 37 38 39
        x = np.random.randint(
            self.low, self.high, self.x_shape, dtype=self.dtype
        )
        y = np.random.randint(
            self.low, self.high, self.y_shape, dtype=self.dtype
        )
40 41 42 43 44 45
        out = np.bitwise_and(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}

    def test_check_output(self):
46
        self.check_output(check_cinn=True)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    def test_check_grad(self):
        pass

    def init_dtype(self):
        self.dtype = np.int32

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [2, 3, 4, 5]

    def init_bound(self):
        self.low = -100
        self.high = 100


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class TestBitwiseAnd_ZeroDim1(TestBitwiseAnd):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = []


class TestBitwiseAnd_ZeroDim2(TestBitwiseAnd):
    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = []


class TestBitwiseAnd_ZeroDim3(TestBitwiseAnd):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = [2, 3, 4, 5]


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
class TestBitwiseAndUInt8(TestBitwiseAnd):
    def init_dtype(self):
        self.dtype = np.uint8

    def init_bound(self):
        self.low = 0
        self.high = 100


class TestBitwiseAndInt8(TestBitwiseAnd):
    def init_dtype(self):
        self.dtype = np.int8

    def init_shape(self):
        self.x_shape = [4, 5]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseAndInt16(TestBitwiseAnd):
    def init_dtype(self):
        self.dtype = np.int16

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [4, 1]


class TestBitwiseAndInt64(TestBitwiseAnd):
    def init_dtype(self):
        self.dtype = np.int64

    def init_shape(self):
        self.x_shape = [1, 4, 1]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseAndBool(TestBitwiseAnd):
    def setUp(self):
        self.op_type = "bitwise_and"
姜永久 已提交
120 121
        self.python_api = paddle.tensor.logic.bitwise_and

122 123 124 125 126 127 128 129 130 131
        self.init_shape()

        x = np.random.choice([True, False], self.x_shape)
        y = np.random.choice([True, False], self.y_shape)
        out = np.bitwise_and(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}


132
# ----------------- TEST OP: BitwiseOr ------------------ #
133 134 135
class TestBitwiseOr(OpTest):
    def setUp(self):
        self.op_type = "bitwise_or"
姜永久 已提交
136
        self.python_api = paddle.tensor.logic.bitwise_or
137 138 139 140
        self.init_dtype()
        self.init_shape()
        self.init_bound()

141 142 143 144 145 146
        x = np.random.randint(
            self.low, self.high, self.x_shape, dtype=self.dtype
        )
        y = np.random.randint(
            self.low, self.high, self.y_shape, dtype=self.dtype
        )
147 148 149 150 151 152
        out = np.bitwise_or(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}

    def test_check_output(self):
153
        self.check_output(check_cinn=True)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

    def test_check_grad(self):
        pass

    def init_dtype(self):
        self.dtype = np.int32

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [2, 3, 4, 5]

    def init_bound(self):
        self.low = -100
        self.high = 100


170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
class TestBitwiseOr_ZeroDim1(TestBitwiseOr):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = []


class TestBitwiseOr_ZeroDim2(TestBitwiseOr):
    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = []


class TestBitwiseOr_ZeroDim3(TestBitwiseOr):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = [2, 3, 4, 5]


188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class TestBitwiseOrUInt8(TestBitwiseOr):
    def init_dtype(self):
        self.dtype = np.uint8

    def init_bound(self):
        self.low = 0
        self.high = 100


class TestBitwiseOrInt8(TestBitwiseOr):
    def init_dtype(self):
        self.dtype = np.int8

    def init_shape(self):
        self.x_shape = [4, 5]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseOrInt16(TestBitwiseOr):
    def init_dtype(self):
        self.dtype = np.int16

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [4, 1]


class TestBitwiseOrInt64(TestBitwiseOr):
    def init_dtype(self):
        self.dtype = np.int64

    def init_shape(self):
        self.x_shape = [1, 4, 1]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseOrBool(TestBitwiseOr):
    def setUp(self):
        self.op_type = "bitwise_or"
姜永久 已提交
227 228
        self.python_api = paddle.tensor.logic.bitwise_or

229 230 231 232 233 234 235 236 237 238
        self.init_shape()

        x = np.random.choice([True, False], self.x_shape)
        y = np.random.choice([True, False], self.y_shape)
        out = np.bitwise_or(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}


239
# ----------------- TEST OP: BitwiseXor ---------------- #
240 241 242
class TestBitwiseXor(OpTest):
    def setUp(self):
        self.op_type = "bitwise_xor"
姜永久 已提交
243 244
        self.python_api = paddle.tensor.logic.bitwise_xor

245 246 247 248
        self.init_dtype()
        self.init_shape()
        self.init_bound()

249 250 251 252 253 254
        x = np.random.randint(
            self.low, self.high, self.x_shape, dtype=self.dtype
        )
        y = np.random.randint(
            self.low, self.high, self.y_shape, dtype=self.dtype
        )
255 256 257 258 259 260
        out = np.bitwise_xor(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}

    def test_check_output(self):
261
        self.check_output(check_cinn=True)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

    def test_check_grad(self):
        pass

    def init_dtype(self):
        self.dtype = np.int32

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [2, 3, 4, 5]

    def init_bound(self):
        self.low = -100
        self.high = 100


278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class TestBitwiseXor_ZeroDim1(TestBitwiseXor):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = []


class TestBitwiseXor_ZeroDim2(TestBitwiseXor):
    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = []


class TestBitwiseXor_ZeroDim3(TestBitwiseXor):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = [2, 3, 4, 5]


296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class TestBitwiseXorUInt8(TestBitwiseXor):
    def init_dtype(self):
        self.dtype = np.uint8

    def init_bound(self):
        self.low = 0
        self.high = 100


class TestBitwiseXorInt8(TestBitwiseXor):
    def init_dtype(self):
        self.dtype = np.int8

    def init_shape(self):
        self.x_shape = [4, 5]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseXorInt16(TestBitwiseXor):
    def init_dtype(self):
        self.dtype = np.int16

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]
        self.y_shape = [4, 1]


class TestBitwiseXorInt64(TestBitwiseXor):
    def init_dtype(self):
        self.dtype = np.int64

    def init_shape(self):
        self.x_shape = [1, 4, 1]
        self.y_shape = [2, 3, 4, 5]


class TestBitwiseXorBool(TestBitwiseXor):
    def setUp(self):
        self.op_type = "bitwise_xor"
姜永久 已提交
335 336
        self.python_api = paddle.tensor.logic.bitwise_xor

337 338 339 340 341 342 343 344 345 346
        self.init_shape()

        x = np.random.choice([True, False], self.x_shape)
        y = np.random.choice([True, False], self.y_shape)
        out = np.bitwise_xor(x, y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}


347
# ---------------  TEST OP: BitwiseNot ----------------- #
348 349 350
class TestBitwiseNot(OpTest):
    def setUp(self):
        self.op_type = "bitwise_not"
姜永久 已提交
351 352
        self.python_api = paddle.tensor.logic.bitwise_not

353 354 355 356
        self.init_dtype()
        self.init_shape()
        self.init_bound()

357 358 359
        x = np.random.randint(
            self.low, self.high, self.x_shape, dtype=self.dtype
        )
360 361 362 363 364 365
        out = np.bitwise_not(x)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}

    def test_check_output(self):
366
        self.check_output(check_cinn=True)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    def test_check_grad(self):
        pass

    def init_dtype(self):
        self.dtype = np.int32

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]

    def init_bound(self):
        self.low = -100
        self.high = 100


382 383 384 385 386
class TestBitwiseNot_ZeroDim(TestBitwiseNot):
    def init_shape(self):
        self.x_shape = []


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
class TestBitwiseNotUInt8(TestBitwiseNot):
    def init_dtype(self):
        self.dtype = np.uint8

    def init_bound(self):
        self.low = 0
        self.high = 100


class TestBitwiseNotInt8(TestBitwiseNot):
    def init_dtype(self):
        self.dtype = np.int8

    def init_shape(self):
        self.x_shape = [4, 5]


class TestBitwiseNotInt16(TestBitwiseNot):
    def init_dtype(self):
        self.dtype = np.int16

    def init_shape(self):
        self.x_shape = [2, 3, 4, 5]


class TestBitwiseNotInt64(TestBitwiseNot):
    def init_dtype(self):
        self.dtype = np.int64

    def init_shape(self):
        self.x_shape = [1, 4, 1]


class TestBitwiseNotBool(TestBitwiseNot):
    def setUp(self):
        self.op_type = "bitwise_not"
姜永久 已提交
423
        self.python_api = paddle.tensor.logic.bitwise_not
424 425 426 427 428 429 430 431 432 433 434
        self.init_shape()

        x = np.random.choice([True, False], self.x_shape)
        out = np.bitwise_not(x)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}


if __name__ == "__main__":
    unittest.main()