set_value_op.h 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <string>
#include <vector>

#include <utility>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

inline std::string GetValueName(framework::proto::VarType::Type data_type) {
  std::string value_name;
  switch (data_type) {
    case framework::proto::VarType::INT32:
      value_name = "int32_values";
      break;
    case framework::proto::VarType::INT64:
      value_name = "int64_values";
      break;
    case framework::proto::VarType::FP32:
      value_name = "fp32_values";
      break;
    case framework::proto::VarType::BOOL:
      value_name = "bool_values";
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type(code %d) for SetValue operator, only "
          "supports bool, int32, float32 and int64.",
          data_type));
  }
  return value_name;
}

inline framework::DDim GetSliceDims(const framework::DDim in_dims,
                                    const std::vector<int64_t> axes,
                                    const std::vector<int64_t> starts,
                                    const std::vector<int64_t> ends) {
  framework::DDim slice_dims(in_dims);

  for (size_t i = 0; i < axes.size(); ++i) {
    int64_t axis = axes[i];
    int64_t dim_value = in_dims[axis];

    int64_t start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
    int64_t end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
    start = std::max(start, static_cast<int64_t>(0));
    end = std::min(end, dim_value);

    PADDLE_ENFORCE_GT(end, start, platform::errors::InvalidArgument(
                                      "end should greater than start, but "
                                      "received end = %d, start = %d",
                                      end, start));
    slice_dims[axis] = end - start;
  }
  return slice_dims;
}

template <typename DeviceContext, typename T>
class SetValueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    const int rank = ctx.Output<framework::LoDTensor>("Out")->dims().size();

    // TODO(liym27): A more elegent code to do this. C++ has to make template
    //  integer as constant, but we had better have alternative writing in the
    //  future.
    switch (rank) {
      case 1:
        SetValueCompute<1>(ctx);
        break;
      case 2:
        SetValueCompute<2>(ctx);
        break;
      case 3:
        SetValueCompute<3>(ctx);
        break;
      case 4:
        SetValueCompute<4>(ctx);
        break;
      case 5:
        SetValueCompute<5>(ctx);
        break;
      case 6:
        SetValueCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SetValueCompute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::LoDTensor>("Input");
    auto* out = ctx.Output<framework::LoDTensor>("Out");

    auto dtype =
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
    auto axes = ctx.Attr<std::vector<int64_t>>("axes");
    auto starts = ctx.Attr<std::vector<int64_t>>("starts");
    auto ends = ctx.Attr<std::vector<int64_t>>("ends");
    auto shape = ctx.Attr<std::vector<int64_t>>("shape");
    auto* value_tensor = ctx.Input<framework::LoDTensor>("ValueTensor");

    auto in_dims = in->dims();
    auto value_dims = framework::make_ddim(shape);
    auto slice_dims = GetSliceDims(in_dims, axes, starts, ends);

    auto place = ctx.GetPlace();
    auto& eigen_place =
        *ctx.template device_context<DeviceContext>().eigen_device();

    // Here copy data from input to avoid data loss at PE and Graph level.
    // TODO(liym27): Speed up in the future version.
    // - Q: Why don't call ShareDataWith to speed up?
    // - A: Because it's not supported to ShareDataWith on OP's input and output
    // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
    // - Q: Why don't delete Input, after all, the input and output are the same
    // Tensor at program level?
    // - A: If deleting Input, the graph will be complex, such as there will
    // be two ops points to the output in graph: op1 -> output <- set_value.
    // In this case, we have to find a way to handle the running order of
    // set_value is what we want.
    TensorCopy(*in, place, out);

    Tensor slice_t(dtype), pad_t(dtype);
    slice_t.mutable_data<T>(slice_dims, place);
    pad_t.mutable_data<T>(in_dims, place);

    auto pad_e = framework::EigenTensor<T, D>::From(pad_t, in_dims);
    auto out_e = framework::EigenTensor<T, D>::From(*out);
    auto slice_e = framework::EigenTensor<T, D>::From(slice_t, slice_dims);

    // Step 1: Set the value of out at `_index` to zero
    // - Step 1.1 Get a slice tensor from out
    Eigen::array<int64_t, D> offsets, extents;
    Eigen::array<std::pair<int64_t, int64_t>, D> paddings;

    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = slice_dims[i];
    }
    int64_t start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i] < 0 ? (starts[i] + in_dims[axes[i]]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axes[i]] = start;
    }
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - slice_dims[i]) - offsets[i];
    }

    slice_e.device(eigen_place) = out_e.slice(offsets, extents);

    // - Step 1.2 Get paded tensor by padding 0 to slice tensor
    pad_e.device(eigen_place) = slice_e.pad(paddings, T(0));

    // - Step 1.3 Set 0 at `_index` of out tensor
    out_e.device(eigen_place) = out_e - pad_e;

    // Step 2: Set a tensor with the same shape as out tensor. And its data at
    // '_index' is the same as value_tensor, and data out of '_index' to zero

    // - Step 2.1 Set the data of slice tensor to 0
    slice_e.device(eigen_place) = slice_e.constant(T(0));

    // - Step 2.2 Set slice tensor with value
    if (value_tensor != nullptr) {
      // ElementwiseComputeEx can do broadcasting
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &slice_t, value_tensor, -1, SubFunctor<T>(), &slice_t);
    } else {
      Tensor value_t(dtype);
      value_t.mutable_data<T>(value_dims, place);
      auto value_name = GetValueName(dtype);
      CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
      value_t.Resize(value_dims);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &slice_t, &value_t, -1, SubFunctor<T>(), &slice_t);
    }

    // - Step 2.3 Pad slice tensor with 0
    pad_e.device(eigen_place) = slice_e.pad(paddings, T(0));

    // Step 3: Set out tensor with value_tensor
    out_e.device(eigen_place) = out_e - pad_e;
  }
};

}  // namespace operators
}  // namespace paddle