frompaddle.trainer.PyDataProvider2import*# Define a py data provider@provider(input_types=[dense_vector(28*28),integer_value(10)])defprocess(settings,filename):# settings is not used currently.f=open(filename,'r')# open one of training fileforlineinf:# read each linelabel,pixel=line.split(';')# get features and labelpixels_str=pixel.split(' ')pixels_float=[]foreach_pixel_strinpixels_str:pixels_float.append(float(each_pixel_str))# give data to paddle.yield{"pixel":pixels_float,'label':int(label)}f.close()# close file