analyzer_tester.cc 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
19
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
20
#include "paddle/fluid/framework/ir/pass.h"
L
luotao1 已提交
21
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
22
#include "paddle/fluid/inference/analysis/ut_helper.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/inference/api/analysis_predictor.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/inference/utils/singleton.h"
27
#include "paddle/fluid/platform/profiler.h"
28

29 30
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
31 32
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
33

34 35 36 37
namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
38
using namespace framework;  // NOLINT
Y
Yan Chunwei 已提交
39

Y
Yan Chunwei 已提交
40
TEST(Analyzer, analysis_without_tensorrt) {
41
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
42 43
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
44 45 46 47
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
48
TEST(Analyzer, analysis_with_tensorrt) {
49
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
50 51
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
52 53 54 55
  Analyzer analyser;
  analyser.Run(&argument);
}

56
void TestWord2vecPrediction(const std::string &model_path) {
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
87 88
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
89 90 91 92
                   result[i]);
  }
}

93 94 95 96 97 98 99 100 101 102 103
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
104
  explicit DataRecord(const std::string &path, int batch_size = 1)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
185 186 187
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
188 189 190 191 192 193
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
194 195 196 197
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
198
  week_tensor.lod.assign({one_batch.lod3});
199 200 201
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
202
  minute_tensor.lod.assign({one_batch.lod3});
203
  // clang-format on
204
  // assign data
L
luotao1 已提交
205 206
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
207
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
L
luotao1 已提交
208 209 210 211
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

std::string DescribeTensor(const PaddleTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";

247 248 249
  int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1,
                            [](int a, int b) { return a * b; });
  for (int i = 0; i < dim; i++) {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    os << static_cast<float *>(tensor.data.data())[i] << " ";
  }
  os << '\n';
  return os.str();
}

}  // namespace

const float ditu_rnn_target_data[] = {
    104.711, 11.2431, 1.35422, 0,       0,       0,       0,       0,
    27.7039, 1.41486, 7.09526, 0,       0,       0,       0,       0,
    7.6481,  6.5324,  56.383,  2.88018, 8.92918, 132.007, 4.27429, 2.02934,
    14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
    80.0249, 4.77739, 0,       0,       0,       0,       0,       0,
    47.5643, 2.67029, 8.76252, 0,       0,       0,       0,       0,
    51.8822, 4.4411,  0,       0,       0,       0,       0,       0,
    10.7286, 12.0595, 10.6672, 0,       0,       0,       0,       0,
    93.5771, 3.84641, 0,       0,       0,       0,       0,       0,
    169.426, 0,       0,       0,       0,       0,       0,       0};
// Test with a really complicate model.
void TestDituRNNPrediction(const std::string &model_path,
                           const std::string &data_path, int batch_size,
                           bool use_analysis, bool activate_ir,
                           int num_times = 1) {
  NativeConfig config;
275 276
  config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__";
  config.param_file = FLAGS_infer_ditu_rnn_model + "/param";
277 278 279 280
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;

281
  auto base_predictor =
282
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
283 284
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(config);
285 286 287 288
  std::vector<PaddleTensor> input_slots;
  DataRecord data(data_path, batch_size);
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
289 290 291
  std::vector<PaddleTensor> outputs, base_outputs;

  base_predictor->Run(input_slots, &base_outputs);
292 293 294 295 296 297

  Timer timer;
  timer.tic();
  for (int i = 0; i < num_times; i++) {
    predictor->Run(input_slots, &outputs);
  }
298 299 300 301
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << num_times
            << ", latency: " << timer.toc() / num_times << "ms";
  LOG(INFO) << "=====================================";
302

303 304 305 306 307
  PADDLE_ENFORCE_GT(outputs.size(), 0);
  PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &base_out = base_outputs[i];
308 309
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
310 311 312 313
    size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(),
                                   1, [](int a, int b) { return a * b; });
    PADDLE_ENFORCE_EQ(size, size1);
    PADDLE_ENFORCE_GT(size, 0);
314
    float *data = static_cast<float *>(out.data.data());
315
    float *base_data = static_cast<float *>(base_out.data.data());
T
tensor-tang 已提交
316 317
    for (size_t j = 0; j < size; j++) {
      EXPECT_NEAR(data[j], base_data[j], 1e-3);
318 319
    }
  }
Y
Yan Chunwei 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332

  if (use_analysis && activate_ir) {
    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }

    ASSERT_TRUE(fuse_statis.count("fc"));
    EXPECT_EQ(fuse_statis.at("fc"), 1);
333
    EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 1);
Y
Yan Chunwei 已提交
334
  }
335 336 337 338 339
}

// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
340
                        FLAGS_batch_size, false, false, FLAGS_repeat);
341 342 343 344 345 346 347
}

// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST(Analyzer, DituRNN_with_analysis) {
  LOG(INFO) << "ditu rnn with analysis";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
348
                        FLAGS_batch_size, true, false, FLAGS_repeat);
349 350 351 352 353 354
}

// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
  LOG(INFO) << "ditu rnn with analysis and IR fuse";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
355
                        FLAGS_batch_size, true, true, FLAGS_repeat);
356 357
}

358 359 360
}  // namespace analysis
}  // namespace inference
}  // namespace paddle