process_group_bkcl.cc 22.6 KB
Newer Older
J
james 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

W
Wen Sun 已提交
15
#include "paddle/fluid/distributed/collective/process_group_bkcl.h"
J
james 已提交
16

W
Wen Sun 已提交
17
#include "paddle/fluid/distributed/collective/bkcl_tools.h"
W
Wen Sun 已提交
18
#include "paddle/fluid/distributed/collective/common.h"
19
#include "paddle/fluid/distributed/collective/utils.h"
J
james 已提交
20 21
#include "paddle/fluid/platform/device/xpu/bkcl_helper.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
H
Huang Jiyi 已提交
22
#include "paddle/phi/api/lib/utils/allocator.h"
23 24
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/enforce.h"
25
#include "paddle/phi/core/errors.h"
J
james 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace distributed {
using XPUDeviceContext = paddle::platform::XPUDeviceContext;

ProcessGroupBKCL::BKCLTask::BKCLTask(const Place& place,
                                     int rank,
                                     CommType comm_type,
                                     bool sync_op,
                                     bool use_calc_stream)
    : TaskStream(rank, comm_type, sync_op, use_calc_stream), place_(place) {
  comm_event_ = std::make_shared<XPUEventManager>();
}

ProcessGroupBKCL::BKCLTask::~BKCLTask() {}

bool ProcessGroupBKCL::BKCLTask::IsCompleted() {
  LOG_FIRST_N(WARNING, 1) << "XPU do not support event query now.";
  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupBKCL::BKCLTask::Wait(std::chrono::milliseconds timeout) {
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

  const auto* calc_ctx = static_cast<XPUContext*>(
      platform::DeviceContextPool::Instance().Get(place_));
  comm_event_->Block(*calc_ctx);

  if (barrier_) {
    // If we use the work to do barrier, we should block cpu
62 63 64 65 66

    // TODO(zhangxiaoci) There is no such function that can sync entire device
    // for xpu (for now), so all we can do is sync whatever stream that we know
    // and hope for the best. Note that for correctness the communication stream
    // needs to be in sync mode.
J
james 已提交
67 68
    platform::XPUDeviceGuard guard(place_.GetDeviceId());
    xpu_wait();
69
    calc_ctx->Wait();
J
james 已提交
70 71 72 73 74 75 76
  }
  return true;
}

// Same as Wait
void ProcessGroupBKCL::BKCLTask::Synchronize() { Wait(kWaitTimeout); }

77 78 79 80 81
ProcessGroupBKCL::ProcessGroupBKCL(
    const std::shared_ptr<phi::distributed::Store>& store,
    int rank,
    int size,
    int gid)
82
    : ProcessGroupWithStream(rank, size, gid), store_(store) {}
J
james 已提交
83 84 85 86 87 88 89 90 91

void ProcessGroupBKCL::GroupStart() {
  PADDLE_ENFORCE_XPU_SUCCESS(bkcl_group_start());
}

void ProcessGroupBKCL::GroupEnd() {
  PADDLE_ENFORCE_XPU_SUCCESS(bkcl_group_end());
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Recv(
    phi::DenseTensor* tensor,
    int src_rank,
    int64_t offset,
    int64_t numel,
    bool sync_op,
    bool use_calc_stream) {
  // numel > 0 indicates the tensor need to be sliced
  phi::DenseTensor partial_tensor;
  if (numel > 0) {
    partial_tensor = GetPartialTensor(*tensor, offset, numel);
    tensor = &partial_tensor;
  }

  return Collective(
      tensor,
      // have to pass a tensor here
      // TODO(zhangxiaoci) catch up with nccl's api
      *tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_recv(comm,
                         output->data(),
                         output->numel(),
                         src_rank,
                         platform::ToBKCLDataType(
                             framework::TransToProtoVarType(output->type())),
                         stream);
      },
      CommType::RECV,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Send(
    const phi::DenseTensor& tensor,
    int dst_rank,
    int64_t offset,
    int64_t numel,
    bool sync_op,
    bool use_calc_stream) {
  // numel > 0 indicates the tensor need to be sliced
  const phi::DenseTensor& tensor_maybe_partial =
      numel > 0 ? GetPartialTensor(tensor, offset, numel) : tensor;

  return Collective(
      nullptr,
      tensor_maybe_partial,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_send(comm,
                         input.data(),
                         input.numel(),
                         dst_rank,
                         platform::ToBKCLDataType(
                             framework::TransToProtoVarType(input.type())),
                         stream);
      },
      CommType::SEND,
      sync_op,
      use_calc_stream);
}

J
james 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
std::shared_ptr<ProcessGroupBKCL::BKCLTask> ProcessGroupBKCL::CreateTask(
    const Place& place,
    int rank,
    CommType comm_type,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupBKCL::BKCLTask>(
      place, rank, comm_type, is_sync, use_calc_stream);
}

void ProcessGroupBKCL::BroadcastUniqueBKCLID(BKCLUniqueId* bkcl_id) {
  auto key = "ProcessGroupBKCL/bkcl_ids/" + std::to_string(gid_) + "/0";
  if (rank_ == 0) {
    auto id = std::vector<uint8_t>(
        reinterpret_cast<uint8_t*>(bkcl_id),
        reinterpret_cast<uint8_t*>(bkcl_id) + BKCL_UNIQUE_ID_BYTES);
    store_->set(key, id);
  } else {
    const auto& ret = store_->get(key);
    std::memcpy(bkcl_id, ret.data(), ret.size());
  }
}

void ProcessGroupBKCL::CreateBKCLEnvCache(const Place& place,
                                          const std::string& place_key) {
184
  platform::XPUDeviceGuard guard(place.GetDeviceId());
J
james 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
  BKCLUniqueId bkcl_id;
  if (rank_ == 0) {
    PADDLE_ENFORCE_XPU_SUCCESS(bkcl_get_unique_id(&bkcl_id));
  }
  BroadcastUniqueBKCLID(&bkcl_id);

  VLOG(3) << "init bkcl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << place_key
          << ", bkcl uniqueid: " << SerializeBKCLUniqueId(bkcl_id);

  calc_event_ = std::make_shared<XPUEventManager>();
  auto* calc_ctx = static_cast<phi::XPUContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  // must use XPUDeviceContext here to make sure XPUContext::Init() is called
  auto comm_ctx = std::make_unique<XPUDeviceContext>(place);
R
Roc 已提交
200 201 202 203 204
  // set allocator
  comm_ctx->SetAllocator(memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place)
                             .get());

J
james 已提交
205 206 207
  BKCLContext_t bkcl_comm;
  BKCLCHECK(bkcl_init_rank(&bkcl_comm, GetRank(), GetSize(), &bkcl_id));
  comm_ctx->SetBkclContext(bkcl_comm);
208 209
  // comm context creates a separate XPU stream for communication
  comm_ctx->CreateStream();
J
james 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

  place_to_calc_ctx_[place_key] = calc_ctx;
  place_to_comm_ctx_[place_key] = std::move(comm_ctx);
}

void ProcessGroupBKCL::SyncCalcStream(const Place& place) {
  const std::string& key = GetKeyFromPlace(place);
  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto* comm_ctx = place_to_comm_ctx_[key].get();
  calc_event_->Record(*calc_ctx);
  calc_event_->Block(*comm_ctx);
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Collective(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    Fn fn,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& place = in_tensor.place();
  const auto& key = GetKeyFromPlace(place);

J
james 已提交
234 235
  if (!calc_event_ ||
      (place_to_comm_ctx_.find(key) == place_to_comm_ctx_.end())) {
J
james 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    CreateBKCLEnvCache(place, key);
  }

  if (!use_calc_stream) {
    SyncCalcStream(place);
  }

  auto task = CreateTask(place, rank_, op_type, sync_op, use_calc_stream);

  const auto* calc_ctx = place_to_calc_ctx_[key];
  const auto& comm_ctx = place_to_comm_ctx_[key];
  auto bkcl_stream = use_calc_stream ? calc_ctx->stream() : comm_ctx->stream();
  fn(out_tensor, in_tensor, comm_ctx->bkcl_context(), bkcl_stream);

  if (!use_calc_stream) {
J
james 已提交
251 252
    PADDLE_ENFORCE_NOT_NULL(
        comm_ctx.get(), platform::errors::Fatal("comm context is nullptr."));
J
james 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    task->comm_event_->Record(*comm_ctx.get());
  }

  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_reduce(
            comm,
            input.data(),
            output->data(),
            input.numel(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            ToBKCLRedType(opts.reduce_op),
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        int root = opts.source_rank + opts.source_root;
        return bkcl_broadcast(comm,
                              input.data(),
                              output->data(),
                              input.numel(),
                              platform::ToBKCLDataType(
                                  framework::TransToProtoVarType(input.type())),
                              root,
                              stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
318 319
    int64_t offset,  // for compatibility, no use now
    int64_t numel,   // for compatibility, no use now
J
james 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_gather(
            comm,
            input.data(),
            input.numel(),
            output->data(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

J
james 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Reduce(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
356 357 358 359 360 361 362 363 364
        return bkcl_reduce(comm,
                           input.data(),
                           output->data(),
                           input.numel(),
                           platform::ToBKCLDataType(
                               framework::TransToProtoVarType(input.type())),
                           ToBKCLRedType(opts.reduce_op),
                           opts.root_rank,
                           stream);
J
james 已提交
365
      },
366
      CommType::REDUCE,
J
james 已提交
367 368 369 370
      sync_op,
      use_calc_stream);
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::ReduceScatter(
    phi::DenseTensor* out_tensor,
    const phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      out_tensor,
      in_tensor,
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_reduce_scatter(
            comm,
            input.data(),
            output->data(),
            output->numel(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            ToBKCLRedType(opts.reduce_op),
            stream);
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

J
james 已提交
399 400
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Barrier(
    const BarrierOptions& opts) {
401 402 403 404 405
  PADDLE_ENFORCE_GE(opts.device_id,
                    0,
                    platform::errors::PreconditionNotMet(
                        "The barrier device id must greater or equal than 0."));
  platform::XPUPlace place(opts.device_id);
J
james 已提交
406
  auto allocator = std::unique_ptr<phi::Allocator>(
407
      new paddle::experimental::DefaultAllocator(place));
J
james 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
  phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim{1});
  phi::DenseTensor barrier_tensor{allocator.get(), meta};

  auto task = AllReduce(&barrier_tensor,
                        barrier_tensor,
                        {},
                        /*sync_op*/ true,
                        /*use_calc_stream*/ false);
  auto bkcl_task = dynamic_cast<BKCLTask*>(task.get());
  bkcl_task->barrier_ = true;
  return task;
}

421
phi::DeviceContext* ProcessGroupBKCL::GetDeviceContext(
J
james 已提交
422 423 424 425
    const Place& place) const {
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

426
phi::DeviceContext* ProcessGroupBKCL::GetDeviceContext(
J
james 已提交
427 428 429 430
    const Place& place, bool use_calc_stream) const {
  const std::string& key = GetKeyFromPlace(place);
  if (use_calc_stream) {
    const auto& iter = place_to_calc_ctx_.find(key);
R
Roc 已提交
431
    return iter->second;
J
james 已提交
432 433 434 435 436 437
  } else {
    const auto& iter = place_to_comm_ctx_.find(key);
    PADDLE_ENFORCE_NE(iter,
                      place_to_comm_ctx_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find device context in process group."));
R
Roc 已提交
438
    return iter->second.get();
J
james 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  }
}

// below are old apis
std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
457 458 459 460
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_reduce(
            comm,
            input.data(),
            output->data(),
            input.numel(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            ToBKCLRedType(opts.reduce_op),
            stream);
      },
      CommType::ALLREDUCE,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
498 499 500 501
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_reduce(
            comm,
            input.data(),
            output->data(),
            input.numel(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            ToBKCLRedType(opts.reduce_op),
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
538 539 540 541
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return bkcl_broadcast(comm,
                              input.data(),
                              output->data(),
                              input.numel(),
                              platform::ToBKCLDataType(
                                  framework::TransToProtoVarType(input.type())),
                              root,
                              stream);
      },
      CommType::BROADCAST,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
581 582 583 584
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return bkcl_broadcast(comm,
                              input.data(),
                              output->data(),
                              input.numel(),
                              platform::ToBKCLDataType(
                                  framework::TransToProtoVarType(input.type())),
                              root,
                              stream);
      },
      CommType::BROADCAST,
      sync_op,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
J
james 已提交
622 623 624 625
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in XPUPlace."));
J
james 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in XPUPlace."));
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_gather(
            comm,
            input.data(),
            input.numel(),
            output->data(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            stream);
      },
      CommType::ALLGATHER,
      /*sync_op*/ true,
      /*use_calc_stream*/ false);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupBKCL::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op) {
  PADDLE_ENFORCE_EQ(
      in_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      out_tensors.size(),
      1,
      platform::errors::InvalidArgument(
          "BKCL only support single tensor collective communication."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInXPUPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in XPUPlace."));
  return Collective(
      &out_tensors[0],
      in_tensors[0],
      [&](phi::DenseTensor* output,
          const phi::DenseTensor& input,
          BKCLContext_t comm,
          const XPUStream& stream) {
        return bkcl_all_gather(
            comm,
            input.data(),
            input.numel(),
            output->data(),
            platform::ToBKCLDataType(
                framework::TransToProtoVarType(input.type())),
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      /*use_calc_stream*/ false);
}

L
LiYuRio 已提交
690
std::shared_ptr<ProcessGroupBKCL> ProcessGroupBKCL::CreateProcessGroupBKCL(
691 692 693 694
    const std::shared_ptr<phi::distributed::Store>& store,
    int rank,
    int size,
    int gid) {
L
LiYuRio 已提交
695 696 697 698 699 700
  auto process_group =
      std::make_shared<ProcessGroupBKCL>(store, rank, size, gid);
  ProcessGroupIdMap::GetInstance().emplace(gid, process_group);
  return process_group;
}

J
james 已提交
701 702
}  //  namespace distributed
}  //  namespace paddle