nearest_neighbor_interp_op.cu 8.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/nearest_neighbor_interp_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::Tensor;

template <typename T>
__global__ void KeBilinearInterpFw(
    const T* in, const size_t in_img_h, const size_t in_img_w,
    const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
    const size_t out_img_w, const size_t output_h, const size_t output_w,
    const size_t num_channels, const T ratio_h, const T ratioW) {
  int nthreads = output_h * output_w;
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  if (tid < nthreads) {
    int out_id_h = tid / output_w;
    int out_id_w = tid % output_w;
    int in_img_size = input_w / num_channels;
    int out_img_size = output_w / num_channels;
    int channel_id = out_id_w / out_img_size;

    int out_img_idy = (out_id_w % out_img_size) / out_img_w;
    int in_img_idy = ratio_h * out_img_idy;
    int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
    T h1lambda = ratio_h * out_img_idy - in_img_idy;
    T h2lambda = 1.f - h1lambda;

    int out_img_idx = tid % out_img_w;
    int in_img_idx = ratioW * out_img_idx;
    int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
    T w1lambda = ratioW * out_img_idx - in_img_idx;
    T w2lambda = 1.f - w1lambda;

    const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
                          in_img_idy * in_img_w + in_img_idx];

    // bilinear interpolation
    out[out_id_h * output_w + out_id_w] =
        h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
        h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
                    w1lambda * in_pos[h_id * in_img_w + w_id]);
  }
}

template <typename T>
__global__ void KeBilinearInterpBw(
    T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
    const size_t input_w, const T* out, const size_t out_img_h,
    const size_t out_img_w, const size_t output_h, const size_t output_w,
    const size_t num_channels, const T ratio_h, const T ratioW) {
  int nthreads = output_h * output_w;
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  if (tid < nthreads) {
    int out_id_h = tid / output_w;
    int out_id_w = tid % output_w;
    int in_img_size = input_w / num_channels;
    int out_img_size = output_w / num_channels;
    int channel_id = out_id_w / out_img_size;

    int out_img_idy = (out_id_w % out_img_size) / out_img_w;
    int in_img_idy = ratio_h * out_img_idy;
    int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
    T h1lambda = ratio_h * out_img_idy - in_img_idy;
    T h2lambda = 1.f - h1lambda;

    int out_img_idx = tid % out_img_w;
    int in_img_idx = ratioW * out_img_idx;
    int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
    T w1lambda = ratioW * out_img_idx - in_img_idx;
    T w2lambda = 1.f - w1lambda;

    T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
                    in_img_idy * in_img_w + in_img_idx];
    const T* out_pos = &out[out_id_h * output_w + out_id_w];
    atomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
    atomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
    atomicAdd(&in_pos[h_id * in_img_w], h1lambda * w2lambda * out_pos[0]);
    atomicAdd(&in_pos[h_id * in_img_w + w_id],
              h1lambda * w1lambda * out_pos[0]);
  }
}

template <typename T>
class NearestNeighborInterpOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* input_t = ctx.Input<Tensor>("X");      // float tensor
    auto* output_t = ctx.Output<Tensor>("Out");  // float tensor
    auto* input = input_t->data<T>();

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
    auto out_dims = output_t->dims();
    auto out_size_t = ctx.Input<Tensor>("OutSize");
    if (out_size_t != nullptr) {
      Tensor sizes;
      framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
      auto size_data = sizes.data<int>();
      out_h = size_data[0];
      out_w = size_data[1];
    }
    auto* output = output_t->mutable_data<T>(
        {out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());

    int batch_size = input_t->dims()[0];
    int channels = input_t->dims()[1];
    int in_h = input_t->dims()[2];
    int in_w = input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;

    if (in_h == out_h && in_w == out_w) {
      memcpy(output, input, input_t->numel() * sizeof(T));
    } else {
      int threadNum = batch_size * out_chw;
      int blocks = (threadNum + 1024 - 1) / 1024;

      KeBilinearInterpFw<
          T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
          input, in_h, in_w, batch_size, in_chw, output, out_h, out_w,
          batch_size, out_chw, channels, ratio_h, ratio_w);
    }
  }
};

template <typename T>
class NearestNeighborInterpGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_output = d_output_t->data<T>();
    auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());

    auto& device_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
    math::SetConstant<platform::CUDADeviceContext, T> zero;
    zero(device_ctx, d_input_t, static_cast<T>(0.0));

    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");

    auto out_size_t = ctx.Input<Tensor>("OutSize");
    if (out_size_t != nullptr) {
      Tensor sizes;
      framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
      auto size_data = sizes.data<int>();
      out_h = size_data[0];
      out_w = size_data[1];
    }

    int batch_size = d_input_t->dims()[0];
    int channels = d_input_t->dims()[1];
    int in_h = d_input_t->dims()[2];
    int in_w = d_input_t->dims()[3];

    int in_hw = in_h * in_w;
    int out_hw = out_h * out_w;
    int in_chw = channels * in_hw;
    int out_chw = channels * out_hw;

    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;

    if (in_h == out_h && in_w == out_w) {
      memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
    } else {
      int threadNum = batch_size * out_chw;
      int blocks = (threadNum + 1024 - 1) / 1024;

      KeBilinearInterpBw<
          T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
          d_input, in_h, in_w, batch_size, in_chw, d_output, out_h, out_w,
          batch_size, out_chw, channels, ratio_h, ratio_w);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(nearest_neighbor_interp,
                        ops::NearestNeighborInterpOpCUDAKernel<float>);
REGISTER_OP_CUDA_KERNEL(nearest_neighborinterp_grad,
                        ops::NearestNeighborInterpGradOpCUDAKernel<float>);