activation_op_npu.cc 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class PowNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");
    auto factor = ctx.Attr<float>("factor");

    out->mutable_data<T>(ctx.GetPlace());

    auto runner = NpuOpRunner("Power", {*x}, {*out},
                              {{"power", factor},
                               {"scale", static_cast<float>(1.0)},
                               {"shift", static_cast<float>(0.0)}});

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class PowGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto factor = ctx.Attr<float>("factor");

    auto x_dims = x->dims();

    auto place = ctx.GetPlace();
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // NOTE(liym27): dx = dout * factor * x.pow(factor-1)

    // Step1: Compute x_pow = x.pow(factor-1)
    Tensor x_pow(x->type());
    x_pow.mutable_data<T>(x->dims(), place);
    auto runner_pow = NpuOpRunner("Power", {*x}, {x_pow},
                                  {{"power", factor - static_cast<float>(1)}});
    runner_pow.Run(stream);

    // Step 2: Construct a broadcast factor, which has the same shape with x.

L
Leo Chen 已提交
77
    // 2.1 Get a factor tensor with shape [1].
78 79 80 81 82
    Tensor factor_tensor(framework::proto::VarType::FP32);
    factor_tensor.mutable_data<float>({1}, place);
    TensorFromVector(std::vector<float>{factor}, ctx.device_context(),
                     &factor_tensor);

L
Leo Chen 已提交
83
    // 2.2 Get the factor which has the shape with x and the same value with
84 85 86
    // factor.
    Tensor factor_bc_tensor(framework::proto::VarType::FP32);
    factor_bc_tensor.mutable_data<float>(x_dims, place);
87
    auto runner_bc = NpuOpRunner("FillD", {factor_tensor}, {factor_bc_tensor},
L
Leo Chen 已提交
88
                                 {{"dims", framework::vectorize(x_dims)}});
89 90 91 92 93 94
    runner_bc.Run(stream);

    // Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
    Tensor x_power_mul_factor(x->type());
    x_power_mul_factor.mutable_data<T>(x->dims(), place);
    auto runner_mul_1 =
95
        NpuOpRunner("Mul", {factor_bc_tensor, x_pow}, {x_power_mul_factor}, {});
96 97 98 99 100 101 102 103 104 105
    runner_mul_1.Run(stream);

    // Step 4: Compute dx = dout * factor * x.pow(factor-1)
    dx->mutable_data<T>(place);
    auto runner_mul_2 =
        NpuOpRunner("Mul", {*dout, x_power_mul_factor}, {*dx}, {});
    runner_mul_2.Run(stream);
  }
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename DeviceContext, typename T>
class ReluNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* out = ctx.Output<Tensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

    auto runner = NpuOpRunner("Relu",
                              {
                                  *x,
                              },
                              {*out}, {});

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class ReluGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    dx->mutable_data<T>(ctx.GetPlace());
    auto runner = NpuOpRunner("ReluGrad", {*dout, *out}, {*dx}, {});

    runner.Run(stream);
  }
};
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

template <typename DeviceContext, typename T>
class SqrtNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto runner = NpuOpRunner("Sqrt", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SqrtGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto dx_runner = NpuOpRunner("SqrtGrad", {*out, *dout}, {*dx}, {});
    dx_runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class LogNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    Tensor one(x->type());
    one.mutable_data<T>(x->dims(), place);
    auto one_runner = NpuOpRunner("OnesLike", {*x}, {one}, {});
    one_runner.Run(stream);

    Tensor sub(x->type());
    sub.mutable_data<T>(x->dims(), place);
    auto sub_runner = NpuOpRunner("Sub", {*x, one}, {sub}, {});
    sub_runner.Run(stream);

    auto out_runner = NpuOpRunner("Log1p", {sub}, {*out}, {});
    out_runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class LogGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* x = ctx.Input<Tensor>("X");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    auto runner = NpuOpRunner("DivNoNan", {*dout, *x}, {*dx}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto runner = NpuOpRunner("Tanh", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class TanhGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto place = ctx.GetPlace();

    dx->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto dx_runner = NpuOpRunner("TanhGrad", {*out, *dout}, {*dx}, {});
    dx_runner.Run(stream);
  }
};

template <typename DeviceContext, typename T>
class SquareNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");

    auto* out = ctx.Output<Tensor>("Out");

    auto place = ctx.GetPlace();

    out->mutable_data<T>(place);

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    auto runner = NpuOpRunner("Square", {*x}, {*out}, {});
    runner.Run(stream);
  }
};

306 307 308 309 310 311
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
312
    pow, ops::PowNPUKernel<paddle::platform::NPUDeviceContext, float>,
313 314 315 316
    ops::PowNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
317
    pow_grad, ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
318 319
    ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);
320 321

REGISTER_OP_NPU_KERNEL(
322
    relu, ops::ReluNPUKernel<paddle::platform::NPUDeviceContext, float>,
323 324 325 326 327 328 329 330
    ops::ReluNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    relu_grad,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::ReluGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);
331 332

REGISTER_OP_NPU_KERNEL(
333
    sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>,
334
    ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext,
335
                       paddle::platform::float16>);
336 337 338 339 340

REGISTER_OP_NPU_KERNEL(
    sqrt_grad,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::SqrtGradNPUKernel<paddle::platform::NPUDeviceContext,
341
                           paddle::platform::float16>);
342 343

REGISTER_OP_NPU_KERNEL(
344
    log, ops::LogNPUKernel<paddle::platform::NPUDeviceContext, float>,
345 346 347 348
    ops::LogNPUKernel<paddle::platform::NPUDeviceContext,
                      paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
349
    log_grad, ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
350 351 352 353
    ops::LogGradNPUKernel<paddle::platform::NPUDeviceContext,
                          paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
354
    tanh, ops::TanhNPUKernel<paddle::platform::NPUDeviceContext, float>,
355 356 357 358 359 360 361 362 363 364
    ops::TanhNPUKernel<paddle::platform::NPUDeviceContext,
                       paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
    tanh_grad,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::TanhGradNPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
365
    square, ops::SquareNPUKernel<paddle::platform::NPUDeviceContext, float>,
366 367
    ops::SquareNPUKernel<paddle::platform::NPUDeviceContext,
                         paddle::platform::float16>);