gaussian_random_kernel.cu 3.3 KB
Newer Older
F
furnace 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gaussian_random_kernel.h"

#include <thrust/random.h>
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/common/amp_type_traits.h"
F
furnace 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"

#include "paddle/fluid/framework/generator.h"

namespace phi {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
  unsigned int offset_ = 0;

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
44 45 46
    using MT = typename phi::dtype::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(static_cast<MT>(mean_),
                                         static_cast<MT>(std_));
F
furnace 已提交
47 48 49 50 51 52 53 54 55
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
    MT out = dist(rng);
    return static_cast<T>(out);
  }
};

template <typename T, typename Context>
void GaussianRandomKernel(const Context& dev_ctx,
56
                          const IntArray& shape,
F
furnace 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
                          float mean,
                          float std,
                          int seed,
                          DataType dtype,
                          DenseTensor* out) {
  auto tensor = out;

  bool seed_flag = false;
  if (seed == 0) {
    std::random_device rd;
    seed = rd();
    seed_flag = true;
  }

  tensor->Resize(phi::make_ddim(shape.GetData()));

  T* data = dev_ctx.template Alloc<T>(tensor);

  int64_t size = tensor->numel();

  int device_id = dev_ctx.GetPlace().GetDeviceId();
  auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id);

  if (gen_cuda->GetIsInitPy() && seed_flag) {
81 82 83 84 85
    using MT = typename phi::dtype::MPTypeTrait<T>::Type;
    funcs::normal_distribution<MT> dist;
    funcs::normal_transform<MT> trans(static_cast<MT>(mean),
                                      static_cast<MT>(std));
    funcs::distribution_and_transform<T>(dev_ctx, tensor, dist, trans);
F
furnace 已提交
86
  } else {
87 88 89
    auto func =
        GaussianGenerator<T>(static_cast<T>(mean), static_cast<T>(std), seed);
    IndexKernel<T, GaussianGenerator<T>>(dev_ctx, tensor, func);
F
furnace 已提交
90 91 92 93 94 95 96 97 98 99
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(gaussian_random,
                   GPU,
                   ALL_LAYOUT,
                   phi::GaussianRandomKernel,
                   phi::dtype::float16,
100
                   phi::dtype::bfloat16,
F
furnace 已提交
101 102
                   float,
                   double) {}