small_vector.h 51.8 KB
Newer Older
1 2 3 4 5
// This file copy from llvm/ADT/SmallVector.h, version: 12.0.0
// Modified the following points
// 1. remove  macro
// 2. remove LLVM_LIKELY and LLVM_UNLIKELY
// 3. add at(index) method for small vector
6 7
// 4. wrap the call to max and min with parenthesis to prevent the macro
// expansion to fix the build error on windows platform
8 9 10 11 12 13 14 15 16 17 18 19 20

//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SmallVector class.
//
//===----------------------------------------------------------------------===//

21
#pragma once
22 23 24 25 26 27 28 29 30 31 32

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
33
#include <stdexcept>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#include <string>
#include <type_traits>
#include <utility>

namespace paddle {

/// A range adaptor for a pair of iterators.
///
/// This just wraps two iterators into a range-compatible interface. Nothing
/// fancy at all.
template <typename IteratorT>
class iterator_range {
  IteratorT begin_iterator, end_iterator;

 public:
  // TODO: Add SFINAE to test that the Container's iterators match the range's
  //      iterators.
  template <typename Container>
  iterator_range(Container &&c)
      // TODO: Consider ADL/non-member begin/end calls.
      : begin_iterator(c.begin()),
        end_iterator(c.end()) {}
  iterator_range(IteratorT begin_iterator, IteratorT end_iterator)
      : begin_iterator(std::move(begin_iterator)),
        end_iterator(std::move(end_iterator)) {}

  IteratorT begin() const { return begin_iterator; }
  IteratorT end() const { return end_iterator; }
  bool empty() const { return begin_iterator == end_iterator; }
};

/// Convenience function for iterating over sub-ranges.
///
/// This provides a bit of syntactic sugar to make using sub-ranges
/// in for loops a bit easier. Analogous to std::make_pair().
template <class T>
iterator_range<T> make_range(T x, T y) {
  return iterator_range<T>(std::move(x), std::move(y));
}

template <typename T>
iterator_range<T> make_range(std::pair<T, T> p) {
  return iterator_range<T>(std::move(p.first), std::move(p.second));
}

/// This is all the stuff common to all SmallVectors.
///
/// The template parameter specifies the type which should be used to hold the
/// Size and Capacity of the SmallVector, so it can be adjusted.
/// Using 32 bit size is desirable to shrink the size of the SmallVector.
/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
/// buffering bitcode output - which can exceed 4GB.
template <class Size_T>
class SmallVectorBase {
 protected:
  void *BeginX;
  Size_T Size = 0, Capacity;

  /// The maximum value of the Size_T used.
  static constexpr size_t SizeTypeMax() {
95
    return (std::numeric_limits<Size_T>::max)();
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  }

  SmallVectorBase() = delete;
  SmallVectorBase(void *FirstEl, size_t TotalCapacity)
      : BeginX(FirstEl), Capacity(TotalCapacity) {}

  /// This is a helper for \a grow() that's out of line to reduce code
  /// duplication.  This function will report a fatal error if it can't grow at
  /// least to \p MinSize.
  void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity);

  /// This is an implementation of the grow() method which only works
  /// on POD-like data types and is out of line to reduce code duplication.
  /// This function will report a fatal error if it cannot increase capacity.
  void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);

 public:
  size_t size() const { return Size; }
  size_t capacity() const { return Capacity; }

  bool empty() const { return !Size; }

  /// Set the array size to \p N, which the current array must have enough
  /// capacity for.
  ///
  /// This does not construct or destroy any elements in the vector.
  ///
  /// Clients can use this in conjunction with capacity() to write past the end
  /// of the buffer when they know that more elements are available, and only
  /// update the size later. This avoids the cost of value initializing elements
  /// which will only be overwritten.
  void set_size(size_t N) {
    assert(N <= capacity());
    Size = N;
  }
};

template <class T>
using SmallVectorSizeType =
    typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8,
                              uint64_t,
                              uint32_t>::type;

/// Figure out the offset of the first element.
template <class T, typename = void>
struct SmallVectorAlignmentAndSize {
  alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
      SmallVectorBase<SmallVectorSizeType<T>>)];
  alignas(T) char FirstEl[sizeof(T)];
};

/// This is the part of SmallVectorTemplateBase which does not depend on whether
/// the type T is a POD. The extra dummy template argument is used by ArrayRef
/// to avoid unnecessarily requiring T to be complete.
template <typename T, typename = void>
class SmallVectorTemplateCommon
    : public SmallVectorBase<SmallVectorSizeType<T>> {
  using Base = SmallVectorBase<SmallVectorSizeType<T>>;

  /// Find the address of the first element.  For this pointer math to be valid
  /// with small-size of 0 for T with lots of alignment, it's important that
  /// SmallVectorStorage is properly-aligned even for small-size of 0.
  void *getFirstEl() const {
    return const_cast<void *>(reinterpret_cast<const void *>(
        reinterpret_cast<const char *>(this) +
        offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
  }
  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.

 protected:
  SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}

  void grow_pod(size_t MinSize, size_t TSize) {
    Base::grow_pod(getFirstEl(), MinSize, TSize);
  }

  /// Return true if this is a smallvector which has not had dynamic
  /// memory allocated for it.
  bool isSmall() const { return this->BeginX == getFirstEl(); }

  /// Put this vector in a state of being small.
  void resetToSmall() {
    this->BeginX = getFirstEl();
    this->Size = this->Capacity =
        0;  // FIXME: Setting Capacity to 0 is suspect.
  }

  /// Return true if V is an internal reference to the given range.
  bool isReferenceToRange(const void *V,
                          const void *First,
                          const void *Last) const {
    // Use std::less to avoid UB.
    std::less<> LessThan;
    return !LessThan(V, First) && LessThan(V, Last);
  }

  /// Return true if V is an internal reference to this vector.
  bool isReferenceToStorage(const void *V) const {
    return isReferenceToRange(V, this->begin(), this->end());
  }

  /// Return true if First and Last form a valid (possibly empty) range in this
  /// vector's storage.
  bool isRangeInStorage(const void *First, const void *Last) const {
    // Use std::less to avoid UB.
    std::less<> LessThan;
    return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
           !LessThan(this->end(), Last);
  }

  /// Return true unless Elt will be invalidated by resizing the vector to
  /// NewSize.
  bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
    // Past the end.
    if (!isReferenceToStorage(Elt)) return true;

    // Return false if Elt will be destroyed by shrinking.
    if (NewSize <= this->size()) return Elt < this->begin() + NewSize;

    // Return false if we need to grow.
    return NewSize <= this->capacity();
  }

  /// Check whether Elt will be invalidated by resizing the vector to NewSize.
  void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
    assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
           "Attempting to reference an element of the vector in an operation "
           "that invalidates it");
  }

  /// Check whether Elt will be invalidated by increasing the size of the
  /// vector by N.
  void assertSafeToAdd(const void *Elt, size_t N = 1) {
    this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
  }

  /// Check whether any part of the range will be invalidated by clearing.
  void assertSafeToReferenceAfterClear(const T *From, const T *To) {
    if (From == To) return;
    this->assertSafeToReferenceAfterResize(From, 0);
    this->assertSafeToReferenceAfterResize(To - 1, 0);
  }
  template <
      class ItTy,
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
                       bool> = false>
  void assertSafeToReferenceAfterClear(ItTy, ItTy) {}

  /// Check whether any part of the range will be invalidated by growing.
  void assertSafeToAddRange(const T *From, const T *To) {
    if (From == To) return;
    this->assertSafeToAdd(From, To - From);
    this->assertSafeToAdd(To - 1, To - From);
  }
  template <
      class ItTy,
      std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
                       bool> = false>
  void assertSafeToAddRange(ItTy, ItTy) {}

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  template <class U>
  static const T *reserveForParamAndGetAddressImpl(U *This,
                                                   const T &Elt,
                                                   size_t N) {
    size_t NewSize = This->size() + N;
    if (NewSize <= This->capacity()) return &Elt;

    bool ReferencesStorage = false;
    int64_t Index = -1;
    if (!U::TakesParamByValue) {
      if (This->isReferenceToStorage(&Elt)) {
        ReferencesStorage = true;
        Index = &Elt - This->begin();
      }
    }
    This->grow(NewSize);
    return ReferencesStorage ? This->begin() + Index : &Elt;
  }

 public:
  using size_type = size_t;
  using difference_type = ptrdiff_t;
  using value_type = T;
  using iterator = T *;
  using const_iterator = const T *;

  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using reverse_iterator = std::reverse_iterator<iterator>;

  using reference = T &;
  using const_reference = const T &;
  using pointer = T *;
  using const_pointer = const T *;

  using Base::capacity;
  using Base::empty;
  using Base::size;

  // forward iterator creation methods.
  iterator begin() { return (iterator) this->BeginX; }
  const_iterator begin() const { return (const_iterator) this->BeginX; }
  iterator end() { return begin() + size(); }
  const_iterator end() const { return begin() + size(); }

  // reverse iterator creation methods.
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  size_type size_in_bytes() const { return size() * sizeof(T); }
  size_type max_size() const {
314
    return (std::min)(this->SizeTypeMax(), size_type(-1) / sizeof(T));
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  }

  size_t capacity_in_bytes() const { return capacity() * sizeof(T); }

  /// Return a pointer to the vector's buffer, even if empty().
  pointer data() { return pointer(begin()); }
  /// Return a pointer to the vector's buffer, even if empty().
  const_pointer data() const { return const_pointer(begin()); }

  reference operator[](size_type idx) {
    assert(idx < size());
    return begin()[idx];
  }
  const_reference operator[](size_type idx) const {
    assert(idx < size());
    return begin()[idx];
  }

  reference at(size_type idx) {
    assert(idx < size());
    return begin()[idx];
  }
  const_reference at(size_type idx) const {
    assert(idx < size());
    return begin()[idx];
  }

  reference front() {
    assert(!empty());
    return begin()[0];
  }
  const_reference front() const {
    assert(!empty());
    return begin()[0];
  }

  reference back() {
    assert(!empty());
    return end()[-1];
  }
  const_reference back() const {
    assert(!empty());
    return end()[-1];
  }
};

/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
/// method implementations that are designed to work with non-trivial T's.
///
/// We approximate is_trivially_copyable with trivial move/copy construction and
/// trivial destruction. While the standard doesn't specify that you're allowed
/// copy these types with memcpy, there is no way for the type to observe this.
/// This catches the important case of std::pair<POD, POD>, which is not
/// trivially assignable.
template <typename T,
          bool = (std::is_trivially_copy_constructible<T>::value) &&
                 (std::is_trivially_move_constructible<T>::value) &&
                 std::is_trivially_destructible<T>::value>
class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
  friend class SmallVectorTemplateCommon<T>;

 protected:
  static constexpr bool TakesParamByValue = false;
  using ValueParamT = const T &;

  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  static void destroy_range(T *S, T *E) {
    while (S != E) {
      --E;
      E->~T();
    }
  }

  /// Move the range [I, E) into the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template <typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(
        std::make_move_iterator(I), std::make_move_iterator(E), Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
  /// constructing elements as needed.
  template <typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(I, E, Dest);
  }

  /// Grow the allocated memory (without initializing new elements), doubling
  /// the size of the allocated memory. Guarantees space for at least one more
  /// element, or MinSize more elements if specified.
  void grow(size_t MinSize = 0);

  /// Create a new allocation big enough for \p MinSize and pass back its size
  /// in \p NewCapacity. This is the first section of \a grow().
  T *mallocForGrow(size_t MinSize, size_t &NewCapacity) {
    return static_cast<T *>(
        SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
            MinSize, sizeof(T), NewCapacity));
  }

  /// Move existing elements over to the new allocation \p NewElts, the middle
  /// section of \a grow().
  void moveElementsForGrow(T *NewElts);

  /// Transfer ownership of the allocation, finishing up \a grow().
  void takeAllocationForGrow(T *NewElts, size_t NewCapacity);

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
    return const_cast<T *>(
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
  }

  static T &&forward_value_param(T &&V) { return std::move(V); }
  static const T &forward_value_param(const T &V) { return V; }

  void growAndAssign(size_t NumElts, const T &Elt) {
    // Grow manually in case Elt is an internal reference.
    size_t NewCapacity;
    T *NewElts = mallocForGrow(NumElts, NewCapacity);
    std::uninitialized_fill_n(NewElts, NumElts, Elt);
    this->destroy_range(this->begin(), this->end());
    takeAllocationForGrow(NewElts, NewCapacity);
    this->set_size(NumElts);
  }

  template <typename... ArgTypes>
  T &growAndEmplaceBack(ArgTypes &&... Args) {
    // Grow manually in case one of Args is an internal reference.
    size_t NewCapacity;
    T *NewElts = mallocForGrow(0, NewCapacity);
    ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
    moveElementsForGrow(NewElts);
    takeAllocationForGrow(NewElts, NewCapacity);
    this->set_size(this->size() + 1);
    return this->back();
  }

 public:
  void push_back(const T &Elt) {
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
    ::new ((void *)this->end()) T(*EltPtr);
    this->set_size(this->size() + 1);
  }

  void push_back(T &&Elt) {
    T *EltPtr = reserveForParamAndGetAddress(Elt);
    ::new ((void *)this->end()) T(::std::move(*EltPtr));
    this->set_size(this->size() + 1);
  }

  void pop_back() {
    this->set_size(this->size() - 1);
    this->end()->~T();
  }
};

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
  size_t NewCapacity;
  T *NewElts = mallocForGrow(MinSize, NewCapacity);
  moveElementsForGrow(NewElts);
  takeAllocationForGrow(NewElts, NewCapacity);
}

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
    T *NewElts) {
  // Move the elements over.
  this->uninitialized_move(this->begin(), this->end(), NewElts);

  // Destroy the original elements.
  destroy_range(this->begin(), this->end());
}

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T, bool TriviallyCopyable>
void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
    T *NewElts, size_t NewCapacity) {
  // If this wasn't grown from the inline copy, deallocate the old space.
  if (!this->isSmall()) free(this->begin());

  this->BeginX = NewElts;
  this->Capacity = NewCapacity;
}

/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
/// method implementations that are designed to work with trivially copyable
/// T's. This allows using memcpy in place of copy/move construction and
/// skipping destruction.
template <typename T>
class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
  friend class SmallVectorTemplateCommon<T>;

 protected:
  /// True if it's cheap enough to take parameters by value. Doing so avoids
  /// overhead related to mitigations for reference invalidation.
  static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);

  /// Either const T& or T, depending on whether it's cheap enough to take
  /// parameters by value.
  using ValueParamT =
      typename std::conditional<TakesParamByValue, T, const T &>::type;

  SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}

  // No need to do a destroy loop for POD's.
  static void destroy_range(T *, T *) {}

  /// Move the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template <typename It1, typename It2>
  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
    // Just do a copy.
    uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template <typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    // Arbitrary iterator types; just use the basic implementation.
    std::uninitialized_copy(I, E, Dest);
  }

  /// Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template <typename T1, typename T2>
  static void uninitialized_copy(
      T1 *I,
      T1 *E,
      T2 *Dest,
      std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
                                    T2>::value> * = nullptr) {
    // Use memcpy for PODs iterated by pointers (which includes SmallVector
    // iterators): std::uninitialized_copy optimizes to memmove, but we can
    // use memcpy here. Note that I and E are iterators and thus might be
    // invalid for memcpy if they are equal.
    if (I != E) memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
  }

  /// Double the size of the allocated memory, guaranteeing space for at
  /// least one more element or MinSize if specified.
  void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
    return this->reserveForParamAndGetAddressImpl(this, Elt, N);
  }

  /// Reserve enough space to add one element, and return the updated element
  /// pointer in case it was a reference to the storage.
  T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
    return const_cast<T *>(
        this->reserveForParamAndGetAddressImpl(this, Elt, N));
  }

  /// Copy \p V or return a reference, depending on \a ValueParamT.
  static ValueParamT forward_value_param(ValueParamT V) { return V; }

  void growAndAssign(size_t NumElts, T Elt) {
    // Elt has been copied in case it's an internal reference, side-stepping
    // reference invalidation problems without losing the realloc optimization.
    this->set_size(0);
    this->grow(NumElts);
    std::uninitialized_fill_n(this->begin(), NumElts, Elt);
    this->set_size(NumElts);
  }

  template <typename... ArgTypes>
  T &growAndEmplaceBack(ArgTypes &&... Args) {
    // Use push_back with a copy in case Args has an internal reference,
    // side-stepping reference invalidation problems without losing the realloc
    // optimization.
    push_back(T(std::forward<ArgTypes>(Args)...));
    return this->back();
  }

 public:
  void push_back(ValueParamT Elt) {
    const T *EltPtr = reserveForParamAndGetAddress(Elt);
    memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
    this->set_size(this->size() + 1);
  }

  void pop_back() { this->set_size(this->size() - 1); }
};

/// This class consists of common code factored out of the SmallVector class to
/// reduce code duplication based on the SmallVector 'N' template parameter.
template <typename T>
class SmallVectorImpl : public SmallVectorTemplateBase<T> {
  using SuperClass = SmallVectorTemplateBase<T>;

 public:
  using iterator = typename SuperClass::iterator;
  using const_iterator = typename SuperClass::const_iterator;
  using reference = typename SuperClass::reference;
  using size_type = typename SuperClass::size_type;

 protected:
  using SmallVectorTemplateBase<T>::TakesParamByValue;
  using ValueParamT = typename SuperClass::ValueParamT;

  // Default ctor - Initialize to empty.
  explicit SmallVectorImpl(unsigned N) : SmallVectorTemplateBase<T>(N) {}

 public:
  SmallVectorImpl(const SmallVectorImpl &) = delete;

  ~SmallVectorImpl() {
    // Subclass has already destructed this vector's elements.
    // If this wasn't grown from the inline copy, deallocate the old space.
    if (!this->isSmall()) free(this->begin());
  }

  void clear() {
    this->destroy_range(this->begin(), this->end());
    this->Size = 0;
  }

 private:
  template <bool ForOverwrite>
  void resizeImpl(size_type N) {
    if (N < this->size()) {
      this->pop_back_n(this->size() - N);
    } else if (N > this->size()) {
      this->reserve(N);
      for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
        if (ForOverwrite)
          new (&*I) T;
        else
          new (&*I) T();
      this->set_size(N);
    }
  }

 public:
  void resize(size_type N) { resizeImpl<false>(N); }

  /// Like resize, but \ref T is POD, the new values won't be initialized.
  void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }

  void resize(size_type N, ValueParamT NV) {
    if (N == this->size()) return;

    if (N < this->size()) {
      this->pop_back_n(this->size() - N);
      return;
    }

    // N > this->size(). Defer to append.
    this->append(N - this->size(), NV);
  }

  void reserve(size_type N) {
    if (this->capacity() < N) this->grow(N);
  }

  void pop_back_n(size_type NumItems) {
    assert(this->size() >= NumItems);
    this->destroy_range(this->end() - NumItems, this->end());
    this->set_size(this->size() - NumItems);
  }

  T pop_back_val() {
    T Result = ::std::move(this->back());
    this->pop_back();
    return Result;
  }

  void swap(SmallVectorImpl &RHS);

  /// Add the specified range to the end of the SmallVector.
  template <typename in_iter,
            typename = std::enable_if_t<std::is_convertible<
                typename std::iterator_traits<in_iter>::iterator_category,
                std::input_iterator_tag>::value>>
  void append(in_iter in_start, in_iter in_end) {
    this->assertSafeToAddRange(in_start, in_end);
    size_type NumInputs = std::distance(in_start, in_end);
    this->reserve(this->size() + NumInputs);
    this->uninitialized_copy(in_start, in_end, this->end());
    this->set_size(this->size() + NumInputs);
  }

  /// Append \p NumInputs copies of \p Elt to the end.
  void append(size_type NumInputs, ValueParamT Elt) {
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
    std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
    this->set_size(this->size() + NumInputs);
  }

  void append(std::initializer_list<T> IL) { append(IL.begin(), IL.end()); }

  void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }

  void assign(size_type NumElts, ValueParamT Elt) {
    // Note that Elt could be an internal reference.
    if (NumElts > this->capacity()) {
      this->growAndAssign(NumElts, Elt);
      return;
    }

    // Assign over existing elements.
732
    std::fill_n(this->begin(), (std::min)(NumElts, this->size()), Elt);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    if (NumElts > this->size())
      std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
    else if (NumElts < this->size())
      this->destroy_range(this->begin() + NumElts, this->end());
    this->set_size(NumElts);
  }

  // FIXME: Consider assigning over existing elements, rather than clearing &
  // re-initializing them - for all assign(...) variants.

  template <typename in_iter,
            typename = std::enable_if_t<std::is_convertible<
                typename std::iterator_traits<in_iter>::iterator_category,
                std::input_iterator_tag>::value>>
  void assign(in_iter in_start, in_iter in_end) {
    this->assertSafeToReferenceAfterClear(in_start, in_end);
    clear();
    append(in_start, in_end);
  }

  void assign(std::initializer_list<T> IL) {
    clear();
    append(IL);
  }

  void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }

  iterator erase(const_iterator CI) {
    // Just cast away constness because this is a non-const member function.
    iterator I = const_cast<iterator>(CI);

    assert(this->isReferenceToStorage(CI) &&
           "Iterator to erase is out of bounds.");

    iterator N = I;
    // Shift all elts down one.
    std::move(I + 1, this->end(), I);
    // Drop the last elt.
    this->pop_back();
    return (N);
  }

  iterator erase(const_iterator CS, const_iterator CE) {
    // Just cast away constness because this is a non-const member function.
    iterator S = const_cast<iterator>(CS);
    iterator E = const_cast<iterator>(CE);

    assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");

    iterator N = S;
    // Shift all elts down.
    iterator I = std::move(E, this->end(), S);
    // Drop the last elts.
    this->destroy_range(I, this->end());
    this->set_size(I - this->begin());
    return (N);
  }

 private:
  template <class ArgType>
  iterator insert_one_impl(iterator I, ArgType &&Elt) {
    // Callers ensure that ArgType is derived from T.
    static_assert(
        std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
                     T>::value,
        "ArgType must be derived from T!");

    if (I == this->end()) {  // Important special case for empty vector.
      this->push_back(::std::forward<ArgType>(Elt));
      return this->end() - 1;
    }

    assert(this->isReferenceToStorage(I) &&
           "Insertion iterator is out of bounds.");

    // Grow if necessary.
    size_t Index = I - this->begin();
    std::remove_reference_t<ArgType> *EltPtr =
        this->reserveForParamAndGetAddress(Elt);
    I = this->begin() + Index;

    ::new ((void *)this->end()) T(::std::move(this->back()));
    // Push everything else over.
    std::move_backward(I, this->end() - 1, this->end());
    this->set_size(this->size() + 1);

    // If we just moved the element we're inserting, be sure to update
    // the reference (never happens if TakesParamByValue).
    static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
                  "ArgType must be 'T' when taking by value!");
    if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
      ++EltPtr;

    *I = ::std::forward<ArgType>(*EltPtr);
    return I;
  }

 public:
  iterator insert(iterator I, T &&Elt) {
    return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
  }

  iterator insert(iterator I, const T &Elt) {
    return insert_one_impl(I, this->forward_value_param(Elt));
  }

  iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(NumToInsert, Elt);
      return this->begin() + InsertElt;
    }

    assert(this->isReferenceToStorage(I) &&
           "Insertion iterator is out of bounds.");

    // Ensure there is enough space, and get the (maybe updated) address of
    // Elt.
    const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin() + InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end() - I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd - NumToInsert, OldEnd);

      // If we just moved the element we're inserting, be sure to update
      // the reference (never happens if TakesParamByValue).
      if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
        EltPtr += NumToInsert;

      std::fill_n(I, NumToInsert, *EltPtr);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd - I;
    this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);

    // If we just moved the element we're inserting, be sure to update
    // the reference (never happens if TakesParamByValue).
    if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
      EltPtr += NumToInsert;

    // Replace the overwritten part.
    std::fill_n(I, NumOverwritten, *EltPtr);

    // Insert the non-overwritten middle part.
    std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
    return I;
  }

  template <typename ItTy,
            typename = std::enable_if_t<std::is_convertible<
                typename std::iterator_traits<ItTy>::iterator_category,
                std::input_iterator_tag>::value>>
  iterator insert(iterator I, ItTy From, ItTy To) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) {  // Important special case for empty vector.
      append(From, To);
      return this->begin() + InsertElt;
    }

    assert(this->isReferenceToStorage(I) &&
           "Insertion iterator is out of bounds.");

    // Check that the reserve that follows doesn't invalidate the iterators.
    this->assertSafeToAddRange(From, To);

    size_t NumToInsert = std::distance(From, To);

    // Ensure there is enough space.
    reserve(this->size() + NumToInsert);

    // Uninvalidate the iterator.
    I = this->begin() + InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end() - I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(std::move_iterator<iterator>(this->end() - NumToInsert),
             std::move_iterator<iterator>(this->end()));

      // Copy the existing elements that get replaced.
      std::move_backward(I, OldEnd - NumToInsert, OldEnd);

      std::copy(From, To, I);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Move over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->set_size(this->size() + NumToInsert);
    size_t NumOverwritten = OldEnd - I;
    this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);

    // Replace the overwritten part.
    for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
      *J = *From;
      ++J;
      ++From;
    }

    // Insert the non-overwritten middle part.
    this->uninitialized_copy(From, To, OldEnd);
    return I;
  }

  void insert(iterator I, std::initializer_list<T> IL) {
    insert(I, IL.begin(), IL.end());
  }

  template <typename... ArgTypes>
  reference emplace_back(ArgTypes &&... Args) {
    if (this->size() >= this->capacity())
      return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);

    ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
    this->set_size(this->size() + 1);
    return this->back();
  }

  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);

  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);

  bool operator==(const SmallVectorImpl &RHS) const {
    if (this->size() != RHS.size()) return false;
    return std::equal(this->begin(), this->end(), RHS.begin());
  }
  bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); }

  bool operator<(const SmallVectorImpl &RHS) const {
    return std::lexicographical_compare(
        this->begin(), this->end(), RHS.begin(), RHS.end());
  }
};

template <typename T>
void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
  if (this == &RHS) return;

  // We can only avoid copying elements if neither vector is small.
  if (!this->isSmall() && !RHS.isSmall()) {
    std::swap(this->BeginX, RHS.BeginX);
    std::swap(this->Size, RHS.Size);
    std::swap(this->Capacity, RHS.Capacity);
    return;
  }
  this->reserve(RHS.size());
  RHS.reserve(this->size());

  // Swap the shared elements.
  size_t NumShared = this->size();
  if (NumShared > RHS.size()) NumShared = RHS.size();
  for (size_type i = 0; i != NumShared; ++i) std::swap((*this)[i], RHS[i]);

  // Copy over the extra elts.
  if (this->size() > RHS.size()) {
    size_t EltDiff = this->size() - RHS.size();
    this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end());
    RHS.set_size(RHS.size() + EltDiff);
    this->destroy_range(this->begin() + NumShared, this->end());
    this->set_size(NumShared);
  } else if (RHS.size() > this->size()) {
    size_t EltDiff = RHS.size() - this->size();
    this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end());
    this->set_size(this->size() + EltDiff);
    this->destroy_range(RHS.begin() + NumShared, RHS.end());
    RHS.set_size(NumShared);
  }
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(
    const SmallVectorImpl<T> &RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd;
    if (RHSSize)
      NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin());
    else
      NewEnd = this->begin();

    // Destroy excess elements.
    this->destroy_range(NewEnd, this->end());

    // Trim.
    this->set_size(RHSSize);
    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: don't do this if they're efficiently moveable.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->clear();
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin());
  }

  // Copy construct the new elements in place.
  this->uninitialized_copy(
      RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);

  // Set end.
  this->set_size(RHSSize);
  return *this;
}

template <typename T>
SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
  // Avoid self-assignment.
  if (this == &RHS) return *this;

  // If the RHS isn't small, clear this vector and then steal its buffer.
  if (!RHS.isSmall()) {
    this->destroy_range(this->begin(), this->end());
    if (!this->isSmall()) free(this->begin());
    this->BeginX = RHS.BeginX;
    this->Size = RHS.Size;
    this->Capacity = RHS.Capacity;
    RHS.resetToSmall();
    return *this;
  }

  // If we already have sufficient space, assign the common elements, then
  // destroy any excess.
  size_t RHSSize = RHS.size();
  size_t CurSize = this->size();
  if (CurSize >= RHSSize) {
    // Assign common elements.
    iterator NewEnd = this->begin();
    if (RHSSize) NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);

    // Destroy excess elements and trim the bounds.
    this->destroy_range(NewEnd, this->end());
    this->set_size(RHSSize);

    // Clear the RHS.
    RHS.clear();

    return *this;
  }

  // If we have to grow to have enough elements, destroy the current elements.
  // This allows us to avoid copying them during the grow.
  // FIXME: this may not actually make any sense if we can efficiently move
  // elements.
  if (this->capacity() < RHSSize) {
    // Destroy current elements.
    this->clear();
    CurSize = 0;
    this->grow(RHSSize);
  } else if (CurSize) {
    // Otherwise, use assignment for the already-constructed elements.
    std::move(RHS.begin(), RHS.begin() + CurSize, this->begin());
  }

  // Move-construct the new elements in place.
  this->uninitialized_move(
      RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);

  // Set end.
  this->set_size(RHSSize);

  RHS.clear();
  return *this;
}

/// Storage for the SmallVector elements.  This is specialized for the N=0 case
/// to avoid allocating unnecessary storage.
template <typename T, unsigned N>
struct SmallVectorStorage {
  alignas(T) char InlineElts[N * sizeof(T)];
};

/// We need the storage to be properly aligned even for small-size of 0 so that
/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
/// well-defined.
template <typename T>
struct alignas(T) SmallVectorStorage<T, 0> {};

/// Forward declaration of SmallVector so that
/// calculateSmallVectorDefaultInlinedElements can reference
/// `sizeof(SmallVector<T, 0>)`.
template <typename T, unsigned N>
class SmallVector;

/// Helper class for calculating the default number of inline elements for
/// `SmallVector<T>`.
///
/// This should be migrated to a constexpr function when our minimum
/// compiler support is enough for multi-statement constexpr functions.
template <typename T>
struct CalculateSmallVectorDefaultInlinedElements {
  // Parameter controlling the default number of inlined elements
  // for `SmallVector<T>`.
  //
  // The default number of inlined elements ensures that
  // 1. There is at least one inlined element.
  // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
  // it contradicts 1.
  static constexpr size_t kPreferredSmallVectorSizeof = 64;

  // static_assert that sizeof(T) is not "too big".
  //
  // Because our policy guarantees at least one inlined element, it is possible
  // for an arbitrarily large inlined element to allocate an arbitrarily large
  // amount of inline storage. We generally consider it an antipattern for a
  // SmallVector to allocate an excessive amount of inline storage, so we want
  // to call attention to these cases and make sure that users are making an
  // intentional decision if they request a lot of inline storage.
  //
  // We want this assertion to trigger in pathological cases, but otherwise
  // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
  // larger than kPreferredSmallVectorSizeof (otherwise,
  // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
  // pattern seems useful in practice).
  //
  // One wrinkle is that this assertion is in theory non-portable, since
  // sizeof(T) is in general platform-dependent. However, we don't expect this
  // to be much of an issue, because most LLVM development happens on 64-bit
  // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
  // 32-bit hosts, dodging the issue. The reverse situation, where development
  // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
  // 64-bit host, is expected to be very rare.
  static_assert(
      sizeof(T) <= 256,
      "You are trying to use a default number of inlined elements for "
      "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
      "explicit number of inlined elements with `SmallVector<T, N>` to make "
      "sure you really want that much inline storage.");

  // Discount the size of the header itself when calculating the maximum inline
  // bytes.
  static constexpr size_t PreferredInlineBytes =
      kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
  static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
  static constexpr size_t value =
      NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
};

/// This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small.  It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold.  This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// \note
/// In the absence of a well-motivated choice for the number of inlined
/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
/// omitting the \p N). This will choose a default number of inlined elements
/// reasonable for allocation on the stack (for example, trying to keep \c
/// sizeof(SmallVector<T>) around 64 bytes).
///
/// \warning This does not attempt to be exception safe.
///
/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
template <typename T,
          unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
 public:
  SmallVector() : SmallVectorImpl<T>(N) {}

  ~SmallVector() {
    // Destroy the constructed elements in the vector.
    this->destroy_range(this->begin(), this->end());
  }

  explicit SmallVector(size_t Size, const T &Value = T())
      : SmallVectorImpl<T>(N) {
    this->assign(Size, Value);
  }

  template <typename ItTy,
            typename = std::enable_if_t<std::is_convertible<
                typename std::iterator_traits<ItTy>::iterator_category,
                std::input_iterator_tag>::value>>
  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
    this->append(S, E);
  }

  template <typename RangeTy>
  explicit SmallVector(const iterator_range<RangeTy> &R)
      : SmallVectorImpl<T>(N) {
    this->append(R.begin(), R.end());
  }

  SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
    this->assign(IL);
  }

  SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty()) SmallVectorImpl<T>::operator=(RHS);
  }

  SmallVector &operator=(const SmallVector &RHS) {
    SmallVectorImpl<T>::operator=(RHS);
    return *this;
  }

  SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty()) SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
    if (!RHS.empty()) SmallVectorImpl<T>::operator=(::std::move(RHS));
  }

  SmallVector &operator=(SmallVector &&RHS) {
    SmallVectorImpl<T>::operator=(::std::move(RHS));
    return *this;
  }

  SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
    SmallVectorImpl<T>::operator=(::std::move(RHS));
    return *this;
  }

  SmallVector &operator=(std::initializer_list<T> IL) {
    this->assign(IL);
    return *this;
  }
};

template <typename T, unsigned N>
inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
  return X.capacity_in_bytes();
}

/// Given a range of type R, iterate the entire range and return a
/// SmallVector with elements of the vector.  This is useful, for example,
/// when you want to iterate a range and then sort the results.
template <unsigned Size, typename R>
SmallVector<typename std::remove_const<typename std::remove_reference<
                decltype(*std::begin(std::declval<R &>()))>::type>::type,
            Size>
to_vector(R &&Range) {
  return {std::begin(Range), std::end(Range)};
}

inline void *safe_malloc(size_t Sz) {
  void *Result = std::malloc(Sz);
  if (Result == nullptr) {
    // It is implementation-defined whether allocation occurs if the space
    // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting
    // non-zero, if the space requested was zero.
    if (Sz == 0) return safe_malloc(1);
    throw std::bad_alloc();
  }
  return Result;
}

inline void *safe_calloc(size_t Count, size_t Sz) {
  void *Result = std::calloc(Count, Sz);
  if (Result == nullptr) {
    // It is implementation-defined whether allocation occurs if the space
    // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting
    // non-zero, if the space requested was zero.
    if (Count == 0 || Sz == 0) return safe_malloc(1);
    throw std::bad_alloc();
  }
  return Result;
}

inline void *safe_realloc(void *Ptr, size_t Sz) {
  void *Result = std::realloc(Ptr, Sz);
  if (Result == nullptr) {
    // It is implementation-defined whether allocation occurs if the space
    // requested is zero (ISO/IEC 9899:2018 7.22.3). Retry, requesting
    // non-zero, if the space requested was zero.
    if (Sz == 0) return safe_malloc(1);
    throw std::bad_alloc();
  }
  return Result;
}

// Check that no bytes are wasted and everything is well-aligned.
namespace {
struct Struct16B {
  alignas(16) void *X;
};
struct Struct32B {
  alignas(32) void *X;
};
}
static_assert(sizeof(SmallVector<void *, 0>) ==
                  sizeof(unsigned) * 2 + sizeof(void *),
              "wasted space in SmallVector size 0");
static_assert(alignof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
              "wrong alignment for 16-byte aligned T");
static_assert(alignof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
              "wrong alignment for 32-byte aligned T");
static_assert(sizeof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
              "missing padding for 16-byte aligned T");
static_assert(sizeof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
              "missing padding for 32-byte aligned T");
static_assert(sizeof(SmallVector<void *, 1>) ==
                  sizeof(unsigned) * 2 + sizeof(void *) * 2,
              "wasted space in SmallVector size 1");

static_assert(sizeof(SmallVector<char, 0>) ==
                  sizeof(void *) * 2 + sizeof(void *),
              "1 byte elements have word-sized type for size and capacity");

/// Report that MinSize doesn't fit into this vector's size type. Throws
/// std::length_error or calls report_fatal_error.
static void report_size_overflow(size_t MinSize, size_t MaxSize);
static void report_size_overflow(size_t MinSize, size_t MaxSize) {
  std::string Reason = "SmallVector unable to grow. Requested capacity (" +
                       std::to_string(MinSize) +
                       ") is larger than maximum value for size type (" +
                       std::to_string(MaxSize) + ")";
  throw std::length_error(Reason);
}

/// Report that this vector is already at maximum capacity. Throws
/// std::length_error or calls report_fatal_error.
static void report_at_maximum_capacity(size_t MaxSize);
static void report_at_maximum_capacity(size_t MaxSize) {
  std::string Reason =
      "SmallVector capacity unable to grow. Already at maximum size " +
      std::to_string(MaxSize);
  throw std::length_error(Reason);
}

// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) {
1398
  constexpr size_t MaxSize = (std::numeric_limits<Size_T>::max)();
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

  // Ensure we can fit the new capacity.
  // This is only going to be applicable when the capacity is 32 bit.
  if (MinSize > MaxSize) report_size_overflow(MinSize, MaxSize);

  // Ensure we can meet the guarantee of space for at least one more element.
  // The above check alone will not catch the case where grow is called with a
  // default MinSize of 0, but the current capacity cannot be increased.
  // This is only going to be applicable when the capacity is 32 bit.
  if (OldCapacity == MaxSize) report_at_maximum_capacity(MaxSize);

  // In theory 2*capacity can overflow if the capacity is 64 bit, but the
  // original capacity would never be large enough for this to be a problem.
  size_t NewCapacity = 2 * OldCapacity + 1;  // Always grow.
1413
  return (std::min)((std::max)(NewCapacity, MinSize), MaxSize);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
}

// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
void *SmallVectorBase<Size_T>::mallocForGrow(size_t MinSize,
                                             size_t TSize,
                                             size_t &NewCapacity) {
  NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
  return safe_malloc(NewCapacity * TSize);
}

// Note: Moving this function into the header may cause performance regression.
template <class Size_T>
void SmallVectorBase<Size_T>::grow_pod(void *FirstEl,
                                       size_t MinSize,
                                       size_t TSize) {
  size_t NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
  void *NewElts;
  if (BeginX == FirstEl) {
    NewElts = safe_malloc(NewCapacity * TSize);

    // Copy the elements over.  No need to run dtors on PODs.
    memcpy(NewElts, this->BeginX, size() * TSize);
  } else {
    // If this wasn't grown from the inline copy, grow the allocated space.
    NewElts = safe_realloc(this->BeginX, NewCapacity * TSize);
  }

  this->BeginX = NewElts;
  this->Capacity = NewCapacity;
}

template class paddle::SmallVectorBase<uint32_t>;

// Disable the uint64_t instantiation for 32-bit builds.
// Both uint32_t and uint64_t instantiations are needed for 64-bit builds.
// This instantiation will never be used in 32-bit builds, and will cause
// warnings when sizeof(Size_T) > sizeof(size_t).
#if SIZE_MAX > UINT32_MAX
template class paddle::SmallVectorBase<uint64_t>;

// Assertions to ensure this #if stays in sync with SmallVectorSizeType.
static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint64_t),
              "Expected SmallVectorBase<uint64_t> variant to be in use.");
#else
static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint32_t),
              "Expected SmallVectorBase<uint32_t> variant to be in use.");
#endif

1463
}  // namespace paddle
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

namespace std {

/// Implement std::swap in terms of SmallVector swap.
template <typename T>
inline void swap(paddle::SmallVectorImpl<T> &LHS,
                 paddle::SmallVectorImpl<T> &RHS) {
  LHS.swap(RHS);
}

/// Implement std::swap in terms of SmallVector swap.
template <typename T, unsigned N>
inline void swap(paddle::SmallVector<T, N> &LHS,
                 paddle::SmallVector<T, N> &RHS) {
  LHS.swap(RHS);
}

1481
}  // namespace std