operator.h 15.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

C
chengduo 已提交
55 56 57
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
58
// define some kernel priority
59
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
60 61
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

62 63 64 65
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
67 68
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
69

Q
Qiao Longfei 已提交
70
class OperatorBase;
71
class ExecutionContext;
72

X
Xin Pan 已提交
73 74
class RuntimeContext {
 public:
X
Xin Pan 已提交
75 76
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
77 78 79 80 81

  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
82
/**
X
Xin Pan 已提交
83
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
84 85 86 87 88 89
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
90 91
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
92

Q
Qiao Longfei 已提交
93 94
  virtual ~OperatorBase() {}

95
  /// Executor will call this interface function to Run an op.
96 97
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
98

T
typhoonzero 已提交
99 100 101
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

102 103 104
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
105

106 107
  virtual bool SupportGPU() const { return false; }

108 109
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
110
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
111 112 113 114 115 116 117
  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
118

Y
Yu Yang 已提交
119 120
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
121

122
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
123
  //! Get a input with argument's name described in `op_proto`
124
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
125
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
126
  const std::vector<std::string>& Inputs(const std::string& name) const;
127
  //! Get all inputs variable names
Q
qijun 已提交
128 129
  std::vector<std::string> InputVars() const;

130
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
131
  //! Get a output with argument's name described in `op_proto`
132
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
133 134
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
135
  const std::vector<std::string>& Outputs(const std::string& name) const;
136
  //! Get all outputs variable names
Y
Yu Yang 已提交
137
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
138

139
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
140
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
141 142
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
143

Q
qiaolongfei 已提交
144
 protected:
Q
Qiao Longfei 已提交
145
  std::string type_;
D
dongzhihong 已提交
146
  // NOTE: in case of OpGrad, inputs_ contains:
147
  // I (Inputs)
D
dongzhihong 已提交
148 149
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
150
  VariableNameMap inputs_;
Y
Yu Yang 已提交
151

D
dongzhihong 已提交
152 153
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
154
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
155
  AttributeMap attrs_;
156 157
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
158 159 160 161

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
162 163
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
164 165
};

166
class ExecutionContext {
Y
Yan Chunwei 已提交
167
 public:
168
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
169 170 171
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
172

Q
qiaolongfei 已提交
173 174 175 176
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
177
  template <typename T>
Y
Yu Yang 已提交
178 179
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
180 181
  }

182
  bool HasInput(const std::string& name) const;
183

184
  bool HasOutput(const std::string& name) const;
185

Y
Yu Yang 已提交
186
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
187
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
188 189
  }

Y
Yu Yang 已提交
190
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
191
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
192 193
  }

X
Xin Pan 已提交
194
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
195

X
Xin Pan 已提交
196
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
197

198 199
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
200 201 202 203
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
204
    std::vector<const Variable*> res;
X
Xin Pan 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
225
    res.reserve(names.size());
226 227
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
228 229
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
230
                   });
Y
Yan Chunwei 已提交
231 232 233
    return res;
  }

X
Xin Pan 已提交
234
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
235
    auto names = op_.Outputs(name);
236
    std::vector<Variable*> res;
237
    res.reserve(names.size());
238 239
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
240 241
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
242
                   });
Y
Yan Chunwei 已提交
243 244 245
    return res;
  }

246 247
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
248
    auto* var = InputVar(name);
249
    return var == nullptr ? nullptr : &var->Get<T>();
250 251 252 253
  }

  template <typename T>
  T* Output(const std::string& name) const {
254
    auto var = OutputVar(name);
255
    return var == nullptr ? nullptr : var->GetMutable<T>();
256 257
  }

X
Xin Pan 已提交
258
  template <typename T>
X
clean  
Xin Pan 已提交
259 260
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
261 262 263 264
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
265 266
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
267 268 269
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
270
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
271

X
clean  
Xin Pan 已提交
272
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
273

274 275
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
308 309 310 311
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
312
                   [&](const std::string& sub_name) -> const T* {
313
                     auto var = scope_.FindVar(sub_name);
314
                     return var == nullptr ? nullptr : &var->Get<T>();
315 316 317 318 319
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
320
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
321
    auto names = op_.Outputs(name);
322
    std::vector<T*> res;
323 324
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
325
                   [&](const std::string& sub_name) -> T* {
326
                     auto var = scope_.FindVar(sub_name);
327
                     return var == nullptr ? nullptr : var->GetMutable<T>();
328 329 330 331
                   });
    return res;
  }

332
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
333

Q
QI JUN 已提交
334 335 336 337 338
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

339
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
340
    return device_context_;
Q
qijun 已提交
341
  }
Q
qijun 已提交
342

Q
QI JUN 已提交
343 344 345 346 347 348 349 350
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
351
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
352 353 354
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
355

D
dzhwinter 已提交
356
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
357 358 359 360
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

361
 private:
362 363
  const OperatorBase& op_;
  const Scope& scope_;
364
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
365
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
366 367
};

368 369 370
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
371
template <>
X
clean  
Xin Pan 已提交
372
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
373 374
    const std::string& name) const;

375 376 377 378
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
379 380 381 382
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

383 384 385
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
386
template <>
X
clean  
Xin Pan 已提交
387
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
388

389 390 391 392
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
393
class OpKernelBase {
Q
qijun 已提交
394
 public:
Q
qijun 已提交
395
  /**
396
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
397 398
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
399
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
400 401
   */

402
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
403

Y
Yu Yang 已提交
404 405 406 407 408 409 410
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
411 412
};

Y
Yu Yang 已提交
413 414
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
415
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
416
  using OpKernelMap =
Y
yuyang18 已提交
417
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
418

Y
Yu Yang 已提交
419 420
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
421 422
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
423 424 425 426
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
427
  }
Y
Yan Chunwei 已提交
428

429
  bool SupportGPU() const override {
Y
Yu Yang 已提交
430 431 432 433 434
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
435 436
  }

437 438 439
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
440

X
Xin Pan 已提交
441 442
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
443

Q
qiaolongfei 已提交
444
 protected:
445 446 447 448
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
449 450

 private:
451
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
452
  // same.
453
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
454
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
455 456 457 458 459 460 461

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
462 463 464 465
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
466 467 468 469

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
470 471
};

Y
Yu Yang 已提交
472 473
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
474 475
}  // namespace framework
}  // namespace paddle