test_scatter_op.py 12.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
Z
Zeng Jinle 已提交
19
import os
S
ShenLiang 已提交
20 21
import paddle
import paddle.fluid as fluid
22
from op_test import OpTest
23
import paddle.fluid.core as core
Z
Zeng Jinle 已提交
24
from paddle.fluid.dygraph.base import switch_to_static_graph
Z
zchen0211 已提交
25 26


Q
qijun 已提交
27
class TestScatterOp(OpTest):
Z
zchen0211 已提交
28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "scatter"
30
        ref_np = np.ones((3, 50)).astype("float32")
Q
qijun 已提交
31
        index_np = np.array([1, 2]).astype("int32")
32
        updates_np = np.random.random((2, 50)).astype("float32")
Q
qijun 已提交
33
        output_np = np.copy(ref_np)
Z
zchen0211 已提交
34
        output_np[index_np] = updates_np
D
dzhwinter 已提交
35
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
Z
zchen0211 已提交
36 37
        self.outputs = {'Out': output_np}

Q
qijun 已提交
38 39
    def test_check_output(self):
        self.check_output()
Z
zchen0211 已提交
40

Q
qijun 已提交
41
    def test_check_grad(self):
S
ShenLiang 已提交
42
        self.check_grad(["X", "Updates"], "Out")
Z
zchen0211 已提交
43 44


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class TestScatterOp0(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.attrs = {'overwrite': True}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
61
        self.check_grad(["X", "Updates"], "Out")
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82


class TestScatterOp1(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
83
        self.check_grad(["X", "Updates"], "Out")
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp2(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
107
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp3(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
135
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
136 137


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
class TestScatterOp4(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
153
        self.check_grad(['X', 'Updates'], 'Out')
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp5(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
177
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
178 179


S
ShenLiang 已提交
180 181 182 183 184
class TestScatterAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))
185 186 187 188
        self.executed_api()

    def executed_api(self):
        self.scatter = paddle.scatter
S
ShenLiang 已提交
189 190 191 192 193 194

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 2], dtype="float64")
            index = fluid.data(name="index", shape=[4], dtype="int64")
            updates = fluid.data(name="updates", shape=[4, 2], dtype="float64")
195
            result = self.scatter(input, index, updates, False)
S
ShenLiang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

            input_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            updates_data = np.array(
                [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={
                                  "input": input_data,
                                  "index": index_data,
                                  "updates": updates_data
                              },
                              fetch_list=[result])
            self.assertEqual((fetches[0] == \
                              np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
                index_data = np.array([2, 1, 0, 1]).astype(np.int64)
                updates_data = np.array(
                    [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

                x = fluid.dygraph.to_variable(x_data)
                index = fluid.dygraph.to_variable(index_data)
                updates = fluid.dygraph.to_variable(updates_data)

229
                output1 = self.scatter(x, index, updates, overwrite=False)
S
ShenLiang 已提交
230 231 232
                self.assertEqual((output1.numpy() == \
                                  np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)

Z
Zeng Jinle 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def test_large_data(self):
        if os.name == "nt" or not paddle.is_compiled_with_cuda():
            return

        x = np.random.rand(183826, 256).astype("float32")
        index = np.ones(10759233, dtype="int64")
        updates = np.ones(shape=[10759233, 256], dtype="float32")

        def test_dygraph():
            with fluid.dygraph.guard():
                gpu_out = paddle.scatter(
                    paddle.to_tensor(x),
                    paddle.to_tensor(index), paddle.to_tensor(updates))
                return gpu_out.numpy()

        @switch_to_static_graph
        def test_static_graph():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                x_t = paddle.static.data(name="x", dtype=x.dtype, shape=x.shape)
                index_t = paddle.static.data(
                    name="index", dtype=index.dtype, shape=index.shape)
                updates_t = paddle.static.data(
                    name="updates", dtype=updates.dtype, shape=updates.shape)
                out_t = paddle.scatter(x_t, index_t, updates_t)
                feed = {
                    x_t.name: x,
                    index_t.name: index,
                    updates_t.name: updates
                }
                fetch = [out_t]

                gpu_exe = paddle.static.Executor(paddle.CUDAPlace(0))
                gpu_value = gpu_exe.run(feed=feed, fetch_list=fetch)[0]
                return gpu_value

        self.assertTrue(np.array_equal(test_dygraph(), test_static_graph()))

S
ShenLiang 已提交
271

L
Li Min 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOpFp16(OpTest):
    def setUp(self):
        self.__class__.op_type = "scatter"
        # compute grad in the following code handly.
        self.__class__.no_need_check_grad = True
        self.x_type = 'float16'
        self.x_np = np.ones((3, 3)).astype(self.x_type)
        self.index_np = np.array([1, 2]).astype("int32")
        self.updates_np = np.random.random((2, 3)).astype(self.x_type)
        self.output_np = np.copy(self.x_np)
        self.output_np[self.index_np] = self.updates_np
        self.dout_np = np.random.random((3, 3)).astype(self.x_type)

        # compute ref_dx
        self.ref_dx = np.copy(self.dout_np)
        zero_np = np.zeros((2, 3)).astype(self.x_type)
        self.ref_dx[self.index_np] = zero_np

    def compute_ref_grad_updates(self):
        ref_grad_updates = paddle.gather(
            paddle.to_tensor(self.dout_np), paddle.to_tensor(self.index_np))
        return ref_grad_updates

    def test_scatter_fp16(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        x_tensor = paddle.to_tensor(self.x_np, stop_gradient=False)
        index_tensor = paddle.to_tensor(self.index_np)
        updates_tensor = paddle.to_tensor(self.updates_np, stop_gradient=False)
        out_tensor = paddle.scatter(x_tensor, index_tensor, updates_tensor)
        paddle.autograd.backward(
            [out_tensor], [paddle.to_tensor(self.dout_np)], retain_graph=True)
        ref_grad_updates = self.compute_ref_grad_updates()
        np.testing.assert_allclose(
            ref_grad_updates.numpy(),
            updates_tensor.grad.numpy(),
            rtol=1e-5,
            atol=1e-5)
        np.testing.assert_allclose(
            self.ref_dx, x_tensor.grad.numpy(), rtol=1e-5, atol=1e-5)


315 316 317 318 319
class TestScatterInplaceAPI(TestScatterAPI):
    def executed_api(self):
        self.scatter = paddle.scatter_


Z
zchen0211 已提交
320
if __name__ == "__main__":
321
    paddle.enable_static()
Z
zchen0211 已提交
322
    unittest.main()