test_softmax_op.py 1.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
Q
qijun 已提交
17
from op_test import OpTest
Q
qijun 已提交
18 19 20 21


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
C
caoying03 已提交
22
    shiftx = x - np.max(x).clip(-64.)
Q
qijun 已提交
23 24 25 26
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
27
class TestSoftmaxOp(OpTest):
Q
qijun 已提交
28
    def setUp(self):
Q
fix bug  
qijun 已提交
29
        self.op_type = "softmax"
Q
qijun 已提交
30 31 32
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32")
        }
D
dangqingqing 已提交
33
        self.outputs = {
F
fengjiayi 已提交
34
            'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
D
dangqingqing 已提交
35
        }
Q
qijun 已提交
36

Q
qijun 已提交
37 38
    def test_check_output(self):
        self.check_output()
Q
qijun 已提交
39

Q
qijun 已提交
40
    def test_check_grad(self):
F
fengjiayi 已提交
41
        self.check_grad(['X'], 'Out')
Q
Qiao Longfei 已提交
42 43


C
caoying03 已提交
44
if __name__ == "__main__":
Q
qijun 已提交
45
    unittest.main()