test_conv3d_transpose_op.py 7.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16
import unittest
import numpy as np
17

18
import paddle.fluid.core as core
C
chengduoZH 已提交
19 20 21
from op_test import OpTest


C
chengduoZH 已提交
22
def conv3dtranspose_forward_naive(input_, filter_, attrs):
C
chengduoZH 已提交
23 24 25 26
    in_n, in_c, in_d, in_h, in_w = input_.shape
    f_c, out_c, f_d, f_h, f_w = filter_.shape
    assert in_c == f_c

C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']

    d_bolck_d = dilations[0] * (f_d - 1) + 1
    d_bolck_h = dilations[1] * (f_h - 1) + 1
    d_bolck_w = dilations[2] * (f_w - 1) + 1
    out_d = (in_d - 1) * stride[0] + d_bolck_d
    out_h = (in_h - 1) * stride[1] + d_bolck_h
    out_w = (in_w - 1) * stride[2] + d_bolck_w
C
chengduoZH 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

    for n in range(in_n):
        for d in range(in_d):
            for i in range(in_h):
                for j in range(in_w):
                    input_masked = input_[n, :, d, i, j]  # (c)
                    input_masked = np.reshape(input_masked, (in_c, 1, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))

                    for k in range(out_c):
                        tmp_out = np.sum(input_masked * filter_[:, k, :, :, :],
                                         axis=0)
C
chengduoZH 已提交
49 50 51 52 53
                        d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
                        i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
                        j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
                        out[n, k, d1:d2:dilations[0], i1:i2:dilations[1], j1:j2:
                            dilations[2]] += tmp_out
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55 56
    out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w -
              pad[2]]
C
chengduoZH 已提交
57 58 59 60 61 62
    return out


class TestConv3dTransposeOp(OpTest):
    def setUp(self):
        # init as conv transpose
63
        self.use_cudnn = False
C
chengduoZH 已提交
64 65 66 67 68 69 70 71 72 73
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
74 75 76
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
77
        }
C
chengduoZH 已提交
78 79 80 81

        output = conv3dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype("float32")

C
chengduoZH 已提交
82 83 84
        self.outputs = {'Output': output}

    def test_check_output(self):
85 86 87 88 89
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
90 91

    def test_check_grad(self):
92 93 94 95 96 97 98 99 100 101
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
102 103

    def test_check_grad_no_filter(self):
104 105 106 107 108 109 110 111 112 113 114 115 116
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
117 118

    def test_check_grad_no_input(self):
119 120 121 122 123 124 125 126 127 128 129 130 131
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
132 133 134 135 136

    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
137
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
C
chengduoZH 已提交
138 139 140 141
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
C
chengduoZH 已提交
142
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
143 144


C
chengduoZH 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
class TestWithPad(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


class TestWithStride(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
165 166 167 168 169 170 171 172 173 174
class TestWithDilation(TestConv3dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [2, 2, 2]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]


C
chengduoZH 已提交
175
# ------------ test_cudnn ------------
176
class TestCUDNN(TestConv3dTransposeOp):
C
chengduoZH 已提交
177
    def init_op_type(self):
178 179
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
180 181


182
class TestCUDNNWithPad(TestWithPad):
C
chengduoZH 已提交
183 184 185 186 187 188 189 190 191
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
192 193
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
194 195


196
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
197 198 199 200 201 202 203 204 205
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [2, 2, 2]
        self.dilations = [1, 1, 1]
        self.input_size = [2, 3, 5, 5, 5]  # NCDHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3, 3]

    def init_op_type(self):
206 207
        self.use_cudnn = True
        self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
208 209 210


# #cudnn v5 does not support dilation conv.
211
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
212 213 214 215 216 217 218 219 220
#     def init_test_case(self):
#         self.pad = [1, 1, 1]
#         self.stride = [2, 2, 2]
#         self.dilations = [2, 2, 2]
#         self.input_size = [2, 3, 5, 5, 5]  # NCDHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3, 3]
#
#     def init_op_type(self):
221
#         self.op_type = "conv3d_transpose"
C
chengduoZH 已提交
222

C
chengduoZH 已提交
223 224
if __name__ == '__main__':
    unittest.main()