test_calc_gradient.py 1.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest

17 18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import calc_gradient
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


class TestCalcGradient(unittest.TestCase):
    def test_calc_gradient(self):
        x = layers.create_parameter(dtype="float32", shape=[5, 10])
        y = layers.create_parameter(dtype="float32", shape=[10, 8])
        mul_out = layers.mul(x=x, y=y)
        mean_out = layers.mean(x=mul_out)
        a = calc_gradient(mean_out, mul_out)
        b = calc_gradient(mean_out, x)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        exe.run(fluid.default_main_program(), feed={}, fetch_list=[a, b])


if __name__ == "__main__":
    unittest.main()